A Super-Resolution Mixed-Signal Doherty Power Amplifier for Simultaneous Linearity and Efficiency Enhancement

This article presents a mixed-signal Doherty power amplifier (MSDPA) architecture for simultaneous linearity and efficiency enhancement. The MSDPA comprises one analog power amplifier (PA) as the main PA and one binary-weighted digital PA as the auxiliary PA. The MSDPA input is a generic envelope-varying complex-modulated signal. Based on the real-time amplitude-modulated (AM) envelope, auxiliary digital PA weightings are dynamically turned-on to perform optimum Doherty load modulation for superior linearity and back-off efficiency. Moreover, quantization noise is largely suppressed by the mixed-signal Doherty operation and nonuniform quantization (NUQ), while spectral images are substantially reduced by the quasi-first-order hold (quasi-FOH) operation, which together achieves super-resolution over conventional digital PAs; this makes the MSDPA conducive to millimeter-wave (mm-Wave) or compound PA designs by obviating the need for a large effective number of bits (ENOB) on AM digital controls. As a proof of concept, a 3-bit MSDPA is implemented at 27 GHz in a 45-nm silicon-on-insulator (SOI) CMOS process. The prototype PA achieves 40.1% peak power-added efficiency (PAE), 23.3-dBm saturated output power (<inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {sat}}$ </tex-math></inline-formula>), and 39.4% PAE for 22.4-dBm <inline-formula> <tex-math notation="LaTeX">$P_{1\mathrm {dB}}$ </tex-math></inline-formula> at 27 GHz in continuous-wave (CW) measurements. The PAE at 6-dB power back-off (PBO) is 33.1%, which corresponds to a 1.68<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> improvement over a normalized Class-B PA. With only three control bits, the MSDPA PA supports a 12-Gb/s 64-QAM signal at −24.5-dB rms error vector magnitude (EVM) and average <inline-formula> <tex-math notation="LaTeX">$P_{\mathrm {out}}$ </tex-math></inline-formula>/PAE of +15.6 dBm/27.8% without digital pre-distortion (DPD).

[1]  Kwang-Jin Koh,et al.  Integrated Inverse Class-F Silicon Power Amplifiers for High Power Efficiency at Microwave and mm-Wave , 2016, IEEE Journal of Solid-State Circuits.

[2]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[3]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[4]  A Mortazawi,et al.  Adaptive Input-Power Distribution in Doherty Power Amplifiers for Linearity and Efficiency Enhancement , 2010, IEEE Transactions on Microwave Theory and Techniques.

[5]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[6]  Piet Wambacq,et al.  Low-Power Millimeter Wave Transmitters for High Data Rate Applications , 2020, Signals and Communication Technology.

[7]  Taylor Barton,et al.  Not Just a Phase: Outphasing Power Amplifiers , 2016, IEEE Microwave Magazine.

[8]  Allen Gersho,et al.  Principles of quantization , 1978 .

[9]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[10]  Jan Craninckx,et al.  A CMOS IQ Digital Doherty Transmitter using modulated tuning capacitors , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[11]  Song Hu,et al.  A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications , 2019, IEEE Journal of Solid-State Circuits.

[12]  Tso-Wei Li,et al.  Broadband, Linear, and High-Efficiency Mm-Wave PAs in Silicon ― Overcoming Device Limitations by Architecture/Circuit Innovations , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[13]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[14]  Patrick Reynaert,et al.  A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[15]  Yanjie Wang,et al.  A Highly Linear Dual-Band Mixed-Mode Polar Power Amplifier in CMOS with An Ultra-Compact Output Network , 2016, IEEE Journal of Solid-State Circuits.

[16]  Hua Wang,et al.  Design of A Transformer-Based Reconfigurable Digital Polar Doherty Power Amplifier Fully Integrated in Bulk CMOS , 2015, IEEE Journal of Solid-State Circuits.

[17]  A. Willsky,et al.  Signals and Systems , 2004 .

[18]  Sorin P. Voinigescu,et al.  A 19-dBm, 15-Gbaud, 9-bit SOI CMOS power-DAC cell for high-order QAM W-band transmitters , 2013 .

[19]  Fei Wang,et al.  17.3 A 60GHz on-chip linear radiator with single-element 27.9dBm Psat and 33.1dBm peak EIRP using multifeed antenna for direct on-antenna power combining , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[20]  Bumman Kim,et al.  The Doherty Power Amplifier: Review of Recent Solutions and Trends , 2015, IEEE Transactions on Microwave Theory and Techniques.

[21]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[22]  Fei Wang,et al.  4.8 A Highly Linear Super-Resolution Mixed-Signal Doherty Power Amplifier for High-Efficiency mm-Wave 5G Multi-Gb/s Communications , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[23]  Christer Svensson,et al.  High-speed CMOS circuit technique , 1989 .

[24]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[25]  F. M. Ghannouchi,et al.  Mitigation of Bandwidth Limitation in Wireless Doherty Amplifiers With Substantial Bandwidth Enhancement Using Digital Techniques , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  Ali Afsahi,et al.  2.2 A fully integrated reconfigurable wideband envelope-tracking SoC for high-bandwidth WLAN applications in a 28nm CMOS technology , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[27]  Monte Watanabe,et al.  Simultaneous linearity and efficiency enhancement of a digitally-assisted GaN power amplifier for 64-QAM , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[28]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.

[29]  Hossein Hashemi,et al.  Watt-Level mm-Wave Power Amplification With Dynamic Load Modulation in a SiGe HBT Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[30]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[31]  Yucheng Liu,et al.  A Concurrent Dual-Band Uneven Doherty Power Amplifier with Frequency-Dependent Input Power Division , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Hua Wang,et al.  A Transformer-Based Poly-Phase Network for Ultra-Broadband Quadrature Signal Generation , 2015 .

[33]  Hua Wang,et al.  A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[34]  Brian A. Floyd,et al.  A 28-GHz SiGe BiCMOS PA With 32% Efficiency and 23-dBm Output Power , 2017, IEEE Journal of Solid-State Circuits.

[35]  Pawan Agarwal,et al.  A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[36]  Robert Bogdan Staszewski,et al.  A Wideband 2$\times$ 13-bit All-Digital I/Q RF-DAC , 2014, IEEE Transactions on Microwave Theory and Techniques.

[37]  Payam Heydari Neutralization Techniques for High-Frequency Amplifiers: An Overview , 2017, IEEE Solid-State Circuits Magazine.

[38]  Hua Wang,et al.  A Coupler-Based Differential Doherty Power Amplifier with Built-In Baluns for High Mm-Wave Linear-Yet-Efficient Gbit/s Amplifications , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[39]  Shuhei Yamada,et al.  A 60-GHz Transceiver and Baseband With Polarization MIMO in 28-nm CMOS , 2018, IEEE Journal of Solid-State Circuits.

[40]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[41]  Peter M. Asbeck,et al.  Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[42]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[43]  A. Scuderi,et al.  A high-resolution 24-dBm Digitally-Controlled CMOS PA for multi-Standard RF polar transmitters , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[44]  Bumman Kim,et al.  Highly Linear mm-Wave CMOS Power Amplifier , 2016, IEEE Transactions on Microwave Theory and Techniques.

[45]  Hua Wang,et al.  2.8 A broadband CMOS digital power amplifier with hybrid Class-G Doherty efficiency enhancement , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[46]  Zoya Popovic,et al.  ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers , 2016, IEEE Microwave Magazine.

[47]  Hua Wang,et al.  A CMOS Highly Linear Doherty Power Amplifier With Multigated Transistors , 2019, IEEE Transactions on Microwave Theory and Techniques.

[48]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[49]  Hua Wang,et al.  A 28-GHz Flip-Chip Packaged Chireix Transmitter With On-Antenna Outphasing Active Load Modulation , 2019, IEEE Journal of Solid-State Circuits.

[50]  Shahriar Mirabbasi,et al.  A 25–35 GHz Neutralized Continuous Class-F CMOS Power Amplifier for 5G Mobile Communications Achieving 26% Modulation PAE at 1.5 Gb/s and 46.4% Peak PAE , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[51]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[52]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[53]  R. A. Hadaway,et al.  Monolithic transformers for silicon RF IC design , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[54]  Rob Snyder,et al.  A 45GHz CMOS transmitter SoC with digitally-assisted power amplifiers for 64QAM efficiency improvement , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[55]  Yorgos Palaskas,et al.  A Flip-Chip-Packaged 25.3 dBm Class-D Outphasing Power Amplifier in 32 nm CMOS for WLAN Application , 2011, IEEE Journal of Solid-State Circuits.

[56]  Chunshu Li,et al.  Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication , 2016, IEEE Journal of Solid-State Circuits.

[57]  Sherif Shakib,et al.  mmWave CMOS Power Amplifiers for 5G Cellular Communication , 2019, IEEE Communications Magazine.

[58]  Hao Min,et al.  A Compact Dual-Band Digital Polar Doherty Power Amplifier Using Parallel-Combining Transformer , 2019, IEEE Journal of Solid-State Circuits.

[59]  Bernard M. Smith Instantaneous companding of quantized signals , 1957 .

[60]  Hua Wang,et al.  A Continuous-Mode 23.5-41GHz Hybrid Class-F/F-l Power Amplifier with 46% Peak PAE for 5G Massive MIMO Applications , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[61]  James Buckwalter,et al.  A high-efficiency 28GHz outphasing PA with 23dBm output power using a triaxial balun combiner , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[62]  Peter M. Asbeck,et al.  Power Amplifiers for mm-Wave 5G Applications: Technology Comparisons and CMOS-SOI Demonstration Circuits , 2019, IEEE Transactions on Microwave Theory and Techniques.

[63]  Chandrakanth Reddy Chappidi,et al.  Simultaneously Broadband and Back-Off Efficient mm-Wave PAs: A Multi-Port Network Synthesis Approach , 2018, IEEE Journal of Solid-State Circuits.

[64]  Narek Rostomyan,et al.  28 GHz Doherty Power Amplifier in CMOS SOI With 28% Back-Off PAE , 2018, IEEE Microwave and Wireless Components Letters.

[65]  Amirpouya Kavousian,et al.  A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth , 2008, IEEE Journal of Solid-State Circuits.

[66]  N. Wongkomet,et al.  A $+$31.5 dBm CMOS RF Doherty Power Amplifier for Wireless Communications , 2006, IEEE Journal of Solid-State Circuits.

[67]  R Darraji,et al.  A Dual-Input Digitally Driven Doherty Amplifier Architecture for Performance Enhancement of Doherty Transmitters , 2011, IEEE Transactions on Microwave Theory and Techniques.

[68]  Peter M. Asbeck,et al.  Voltage Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[69]  Fei Wang,et al.  A broadband compact low-loss 4×4 Butler Matrix in CMOS with stacked transformer based quadrature couplers , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[70]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[71]  Hua Wang,et al.  21.2 A 27-to-41GHz MIMO Receiver with N-Input-N-Output Using Scalable Cascadable Autonomous Array-Based High-Order Spatial Filters for Instinctual Full-FoV Multi-Blocker/Signal Management , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[72]  Christian Fager,et al.  Doherty's Legacy: A History of the Doherty Power Amplifier from 1936 to the Present Day , 2016, IEEE Microwave Magazine.

[73]  Christian Fager,et al.  Symmetrical Doherty Power Amplifier With Extended Efficiency Range , 2016, IEEE Transactions on Microwave Theory and Techniques.

[74]  Frederick Raab,et al.  Efficiency of Doherty RF Power-Amplifier Systems , 1987, IEEE Transactions on Broadcasting.

[75]  Earl McCune,et al.  Dynamic Power Supply Transmitters: Envelope Tracking, Direct Polar, and Hybrid Combinations , 2015 .

[76]  Kaushik Dasgupta,et al.  A 25 Gb/s 60 GHz digital power amplifier in 28nm CMOS , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[77]  Andrei Grebennikov,et al.  High-Efficiency Doherty Power Amplifiers: Historical Aspect and Modern Trends , 2012, Proceedings of the IEEE.

[78]  Steve C. Cripps,et al.  Advanced Techniques in RF Power Amplifier Design , 2002 .