Kepler’s conjecture: How some of the greatest minds in history helped solve one of the oldest math problems in the world

[1]  D. A. Sprott Gauss, Carl Friedrich , 2006 .

[2]  D. M. Hawkins,et al.  Branch‐and‐Bound Method , 2006 .

[3]  H. Wood Cell fate: Space–time continuum , 2003, Nature Reviews Neuroscience.

[4]  Steven S. Seiden,et al.  A manifesto for the computational method , 2002, Theor. Comput. Sci..

[5]  W. Hsiang Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .

[6]  Steven S. Seiden,et al.  Can a computer proof be elegant? , 2001, SIGA.

[7]  Ian Witten,et al.  Data Mining , 2000 .

[8]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[9]  Wolfram Pohlers In Memoriam: Kurt Schütte 1909–1998 , 2000, Bulletin of Symbolic Logic.

[10]  E. Klarreich Foams and Honeycombs , 2000, American Scientist.

[11]  Bart Nooteboom,et al.  Market Partitioning and the Geometry of the Resource Space , 1999, American Journal of Sociology.

[12]  Samuel P. Ferguson,et al.  A Formulation of the Kepler Conjecture , 1998, Discrete & Computational Geometry.

[13]  T. Hales Sphere packings IV , 1998, math/9811076.

[14]  T. Hales An overview of the Kepler conjecture , 1998, math/9811071.

[15]  Samuel P. Ferguson Sphere packings V , 1998, math/9811077.

[16]  T. Hales Sphere packings III , 1998, math/9811075.

[17]  T. Hales The Kepler conjecture , 1998, math/9811078.

[18]  T. Hales Sphere packings, I , 1998, Discret. Comput. Geom..

[19]  Barry Cipra,et al.  Packing Challenge Mastered At Last , 1998, Science.

[20]  D. Huylebrouck,et al.  Hilbert’s 18th Problem and the Göttingen Town Library , 1998 .

[21]  T. Hales Sphere Packings, II , 1997, Discret. Comput. Geom..

[22]  K. Bezdek,et al.  Isoperimetric Inequalities and the Dodecahedral Conjecture , 1997 .

[23]  I. Kleiner,et al.  Proof: A Many-Splendored Thing , 1997 .

[24]  J. Wills Finite Sphere Packings and the Methods of Blichfeldt and Rankin , 1997 .

[25]  George G. Szpiro Forecasting chaotic time series with genetic algorithms , 1997 .

[26]  M. Willem Minimax Theorems , 1997 .

[27]  Jean-Michel Kantor,et al.  Hubert’s problems and their sequels , 1996 .

[28]  Chuanming Zong,et al.  Strange Phenomena in Convex and Discrete Geometry , 1996 .

[29]  Wu-Yi Hsiang,et al.  A Rejoinder to Hales’s Article , 1995 .

[30]  T. Hales The status of the kepler conjecture , 1994 .

[31]  W. Thurston On Proof and Progress in Mathematics , 1994, math/9404236.

[32]  Douglas J. Muder,et al.  A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..

[33]  J. Horgan THE DEATH OF PROOF , 1993 .

[34]  W. Hsiang ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .

[35]  Thomas C. Hales,et al.  Remarks on the density of sphere packings in three dimensions , 1993, Comb..

[36]  Szpiro Cycles and circles in roundoff errors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  T. Hales The sphere packing problem , 1992 .

[38]  G. Rousseau On Gauss's proof of Seeber's Theorem , 1992 .

[39]  Ian Stewart,et al.  The Kissing Number , 1992 .

[40]  B Cipra,et al.  Music of the Spheres , 2021, Women's Studies.

[41]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[42]  Douglas J. Muder,et al.  Putting the best face on a Voronoi polyhedron , 1988 .

[43]  J. H. Lindsey,et al.  Sphere packing in R 3 , 1986 .

[44]  J. Calmet Computer Algebra , 1982 .

[45]  R. Dewar Computer Art: Sculptures of Polyhedral Networks Based on an Analogy to Crystal Structures Involving Hypothetical Carbon Atoms , 1982 .

[46]  E. R. Swart The Philosophical Implications of the Four-Color Problem , 1980 .

[47]  L. Tóth Remarks on the closest packing of convex discs , 1978 .

[48]  D. Gorenstein Finite simple groups and their classification , 1974 .

[49]  L. Fejes Tóth,et al.  What the bees know and what they do not know , 1964 .

[50]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[51]  Elvin S. Eyster It is Not “Either…Or…” , 1962 .

[52]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[53]  N. Oler,et al.  An inequality in the geometry of numbers , 1961 .

[54]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[55]  John Leech,et al.  The Problem of the Thirteen Spheres , 1956, The Mathematical Gazette.

[56]  B. L. Waerden,et al.  Das Problem der dreizehn Kugeln , 1952 .

[57]  Robert A. Rankin,et al.  On the Closest Packing of Spheres in n Dimensions , 1947 .

[58]  SIDNEY MELMORE,et al.  Densest Packing of Equal Spheres , 1947, Nature.

[59]  Beniamino Segre,et al.  On the Densest Packing of Circles , 1944 .

[60]  L. Fejes Über die dichteste Kugellagerung , 1942 .

[61]  L. Fejes Über einen geometrischen Satz , 1940 .

[62]  R. Kershner The Number of Circles Covering a Set , 1939 .

[63]  H. F. Blichfeldt The minimum value of quadratic forms, and the closest packing of spheres , 1929 .

[64]  R. Merivale Order of the garter , 1925 .

[65]  William Thomson On the division of space with minimum partitional area , 1887 .

[66]  W. Barlow Probable Nature of the Internal Symmetry of Crystals , 1883, Nature.

[67]  James Stuart Tanton,et al.  Encyclopedia of Mathematics , 2005 .

[68]  C. Lüthy The Invention of Atomist Iconography , 2003 .

[69]  P. Rowley,et al.  Sporadic Simple Groups , 2002 .

[70]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[71]  Gerald Dawe,et al.  The rest is history , 1998 .

[72]  Max Leppmeier,et al.  Kugelpackungen von Kepler bis heute , 1997 .

[73]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[74]  G. Tóth,et al.  Blichfeldt's density bound revisited , 1993 .

[75]  G. Tóth,et al.  Packing and Covering with Convex Sets , 1993 .

[76]  A. Edmondson Isotropic Vector Matrix , 1987 .

[77]  J. D. Tardós,et al.  Publish or Perish , 1987 .

[78]  N. J. A. Sloane,et al.  The Packing of Spheres , 1984 .

[79]  J. Peters,et al.  Action at a Distance , 2020 .

[80]  J. H. van Lint,et al.  A covering problem , 1970 .

[81]  E. M. Nathanson,et al.  The Dirty Dozen , 1965 .

[82]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[83]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[84]  C. Hermite Œuvres de Charles Hermite: Sur la théorie des formes quadratiques ternaires , 1850 .

[85]  Ludwig August Seeber Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .