Kepler’s conjecture: How some of the greatest minds in history helped solve one of the oldest math problems in the world
暂无分享,去创建一个
[1] D. A. Sprott. Gauss, Carl Friedrich , 2006 .
[2] D. M. Hawkins,et al. Branch‐and‐Bound Method , 2006 .
[3] H. Wood. Cell fate: Space–time continuum , 2003, Nature Reviews Neuroscience.
[4] Steven S. Seiden,et al. A manifesto for the computational method , 2002, Theor. Comput. Sci..
[5] W. Hsiang. Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .
[6] Steven S. Seiden,et al. Can a computer proof be elegant? , 2001, SIGA.
[7] Ian Witten,et al. Data Mining , 2000 .
[8] Thomas M Truskett,et al. Is random close packing of spheres well defined? , 2000, Physical review letters.
[9] Wolfram Pohlers. In Memoriam: Kurt Schütte 1909–1998 , 2000, Bulletin of Symbolic Logic.
[10] E. Klarreich. Foams and Honeycombs , 2000, American Scientist.
[11] Bart Nooteboom,et al. Market Partitioning and the Geometry of the Resource Space , 1999, American Journal of Sociology.
[12] Samuel P. Ferguson,et al. A Formulation of the Kepler Conjecture , 1998, Discrete & Computational Geometry.
[13] T. Hales. Sphere packings IV , 1998, math/9811076.
[14] T. Hales. An overview of the Kepler conjecture , 1998, math/9811071.
[15] Samuel P. Ferguson. Sphere packings V , 1998, math/9811077.
[16] T. Hales. Sphere packings III , 1998, math/9811075.
[17] T. Hales. The Kepler conjecture , 1998, math/9811078.
[18] T. Hales. Sphere packings, I , 1998, Discret. Comput. Geom..
[19] Barry Cipra,et al. Packing Challenge Mastered At Last , 1998, Science.
[20] D. Huylebrouck,et al. Hilbert’s 18th Problem and the Göttingen Town Library , 1998 .
[21] T. Hales. Sphere Packings, II , 1997, Discret. Comput. Geom..
[22] K. Bezdek,et al. Isoperimetric Inequalities and the Dodecahedral Conjecture , 1997 .
[23] I. Kleiner,et al. Proof: A Many-Splendored Thing , 1997 .
[24] J. Wills. Finite Sphere Packings and the Methods of Blichfeldt and Rankin , 1997 .
[25] George G. Szpiro. Forecasting chaotic time series with genetic algorithms , 1997 .
[26] M. Willem. Minimax Theorems , 1997 .
[27] Jean-Michel Kantor,et al. Hubert’s problems and their sequels , 1996 .
[28] Chuanming Zong,et al. Strange Phenomena in Convex and Discrete Geometry , 1996 .
[29] Wu-Yi Hsiang,et al. A Rejoinder to Hales’s Article , 1995 .
[30] T. Hales. The status of the kepler conjecture , 1994 .
[31] W. Thurston. On Proof and Progress in Mathematics , 1994, math/9404236.
[32] Douglas J. Muder,et al. A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..
[33] J. Horgan. THE DEATH OF PROOF , 1993 .
[34] W. Hsiang. ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .
[35] Thomas C. Hales,et al. Remarks on the density of sphere packings in three dimensions , 1993, Comb..
[36] Szpiro. Cycles and circles in roundoff errors. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[37] T. Hales. The sphere packing problem , 1992 .
[38] G. Rousseau. On Gauss's proof of Seeber's Theorem , 1992 .
[39] Ian Stewart,et al. The Kissing Number , 1992 .
[40] B Cipra,et al. Music of the Spheres , 2021, Women's Studies.
[41] David Goldberg,et al. What every computer scientist should know about floating-point arithmetic , 1991, CSUR.
[42] Douglas J. Muder,et al. Putting the best face on a Voronoi polyhedron , 1988 .
[43] J. H. Lindsey,et al. Sphere packing in R 3 , 1986 .
[44] J. Calmet. Computer Algebra , 1982 .
[45] R. Dewar. Computer Art: Sculptures of Polyhedral Networks Based on an Analogy to Crystal Structures Involving Hypothetical Carbon Atoms , 1982 .
[46] E. R. Swart. The Philosophical Implications of the Four-Color Problem , 1980 .
[47] L. Tóth. Remarks on the closest packing of convex discs , 1978 .
[48] D. Gorenstein. Finite simple groups and their classification , 1974 .
[49] L. Fejes Tóth,et al. What the bees know and what they do not know , 1964 .
[50] C. A. Rogers,et al. Packing and Covering , 1964 .
[51] Elvin S. Eyster. It is Not “Either…Or…” , 1962 .
[52] W. W. Peterson,et al. Error-Correcting Codes. , 1962 .
[53] N. Oler,et al. An inequality in the geometry of numbers , 1961 .
[54] C. A. Rogers. The Packing of Equal Spheres , 1958 .
[55] John Leech,et al. The Problem of the Thirteen Spheres , 1956, The Mathematical Gazette.
[56] B. L. Waerden,et al. Das Problem der dreizehn Kugeln , 1952 .
[57] Robert A. Rankin,et al. On the Closest Packing of Spheres in n Dimensions , 1947 .
[58] SIDNEY MELMORE,et al. Densest Packing of Equal Spheres , 1947, Nature.
[59] Beniamino Segre,et al. On the Densest Packing of Circles , 1944 .
[60] L. Fejes. Über die dichteste Kugellagerung , 1942 .
[61] L. Fejes. Über einen geometrischen Satz , 1940 .
[62] R. Kershner. The Number of Circles Covering a Set , 1939 .
[63] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres , 1929 .
[64] R. Merivale. Order of the garter , 1925 .
[65] William Thomson. On the division of space with minimum partitional area , 1887 .
[66] W. Barlow. Probable Nature of the Internal Symmetry of Crystals , 1883, Nature.
[67] James Stuart Tanton,et al. Encyclopedia of Mathematics , 2005 .
[68] C. Lüthy. The Invention of Atomist Iconography , 2003 .
[69] P. Rowley,et al. Sporadic Simple Groups , 2002 .
[70] Tomaso Aste,et al. The pursuit of perfect packing , 2000 .
[71] Gerald Dawe,et al. The rest is history , 1998 .
[72] Max Leppmeier,et al. Kugelpackungen von Kepler bis heute , 1997 .
[73] Ying-Cheng Lai,et al. Controlling chaos , 1994 .
[74] G. Tóth,et al. Blichfeldt's density bound revisited , 1993 .
[75] G. Tóth,et al. Packing and Covering with Convex Sets , 1993 .
[76] A. Edmondson. Isotropic Vector Matrix , 1987 .
[77] J. D. Tardós,et al. Publish or Perish , 1987 .
[78] N. J. A. Sloane,et al. The Packing of Spheres , 1984 .
[79] J. Peters,et al. Action at a Distance , 2020 .
[80] J. H. van Lint,et al. A covering problem , 1970 .
[81] E. M. Nathanson,et al. The Dirty Dozen , 1965 .
[82] L. Tóth. Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .
[83] P. Tammes. On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .
[84] C. Hermite. Œuvres de Charles Hermite: Sur la théorie des formes quadratiques ternaires , 1850 .
[85] Ludwig August Seeber. Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .