Sound velocity peak and conformality in isospin QCD

We study zero temperature equations of state (EOS) in isospin QCD within a quark-meson model which is renormalizable and hence eliminates high density artifacts in models with the ultraviolet cutoff (e.g., NJL models). The model exhibits a crossover transition of pion condensations from the Bose-Einstein-Condensation regime at low density to the Bardeen-Cooper-Schrieffer regime at high density. The EOS stiffens quickly and approaches the quark matter regime at density significantly less than the density for pions to spatially overlap. The sound velocity develops a peak in the crossover region, and then gradually relaxes to the conformal value $1/3$ from above, in contrast to the perturbative QCD results which predicts the approach from below. In the context of QCD computations, this opposite trend is in part due to the lack of gluon exchanges in our model, and also due to the non-perturbative power corrections arising from the condensates. We argue that with large power corrections the trace anomaly can be negative. In quantitative level, our EOS is consistent with the lattice results in the BEC regime but begins to get stiffer at higher density. The sound velocity peak also appears at higher density. The BCS gap in our model is $\Delta \simeq 300$ MeV in the quark matter domain, and naive application of the BCS relation for the critical temperature $T_c \simeq 0.57\Delta$ yields the estimate $T_c \simeq 170$ MeV, in good agreement with the lattice data.

[1]  W. Detmold,et al.  Lattice quantum chromodynamics at large isospin density , 2023, Physical Review D.

[2]  V. Dexheimer,et al.  Temperature and Strong Magnetic Field Effects in Dense Matter , 2023, 2304.02454.

[3]  S. Typel,et al.  Exploring thermal effects of the hadron-quark matter transition in neutron star mergers , 2023, 2304.01971.

[4]  O. Ivanytskyi,et al.  Effect of color superconductivity on the mass of hybrid neutron stars in an effective model with perturbative QCD asymptotics , 2022, Physical Review D.

[5]  A. Vuorinen,et al.  Strongly interacting matter exhibits deconfined behavior in massive neutron stars , 2023, Nature communications.

[6]  D. Duarte,et al.  Quarkyonic mean field theory , 2023, Physical Review C.

[7]  T. Kojo,et al.  Chiral Restoration of Nucleons in Neutron Star Matter: Studies Based on a Parity Doublet Model , 2023, Symmetry.

[8]  A. Bandyopadhyay,et al.  QCD equation of state at finite isospin density from the linear sigma model with quarks: The cold case , 2023, Physical Review D.

[9]  G. Endrődi,et al.  Equation of state and speed of sound of isospin-asymmetric QCD on the lattice , 2022, Journal of High Energy Physics.

[10]  S. Sasaki,et al.  Glueball spectroscopy in lattice QCD using gradient flow , 2022, Physical Review D.

[11]  O. Ivanytskyi,et al.  Recovering the Conformal Limit of Color Superconducting Quark Matter within a Confining Density Functional Approach , 2022, Particles.

[12]  Shao-Peng Tang,et al.  Plausible presence of new state in neutron stars with masses above 0.98MTOV. , 2022, Science bulletin.

[13]  L. Mclerran,et al.  Reaching percolation and conformal limits in neutron stars , 2022, Physical Review C.

[14]  L. Mclerran,et al.  Trace Anomaly as Signature of Conformality in Neutron Stars. , 2022, Physical review letters.

[15]  K. Hotokezaka,et al.  Gravitational Wave Signal for Quark Matter with Realistic Phase Transition. , 2022, Physical review letters.

[16]  G. Mathews,et al.  Binary neutron star mergers as a probe of quark-hadron crossover equations of state , 2022, Physical Review D.

[17]  L. Baiotti,et al.  Merger and Postmerger of Binary Neutron Stars with a Quark-Hadron Crossover Equation of State. , 2022, Physical review letters.

[18]  G. Baym,et al.  Implications of NICER for Neutron Star Matter: The QHC21 Equation of State , 2021, The Astrophysical Journal.

[19]  S. Reddy,et al.  Large and massive neutron stars: Implications for the sound speed within QCD of dense matter , 2021, Physical Review C.

[20]  T. Kojo,et al.  Peaks of sound velocity in two color dense QCD: Quark saturation effects and semishort range correlations , 2021, Physical Review D.

[21]  T. Kojo Stiffening of matter in quark-hadron continuity , 2021, Physical Review D.

[22]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[23]  T. E. Riley,et al.  Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations , 2021, The Astrophysical Journal Letters.

[24]  M. Hippert,et al.  Insights on the peak in the speed of sound of ultradense matter , 2021, Physical Review D.

[25]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[26]  H. Hansen,et al.  Quarkyonic stars with isospin-flavor asymmetry , 2021, Physical Review C.

[27]  R. Paatelainen,et al.  Cold quark matter at N3LO : Soft contributions , 2021, Physical Review D.

[28]  N. Kaiser,et al.  Fluctuations and phases in baryonic matter , 2021, The European Physical Journal A.

[29]  R. Paatelainen,et al.  Soft Interactions in Cold Quark Matter. , 2021, Physical review letters.

[30]  T. Kojo,et al.  Thermal quarks and gluon propagators in two-color dense QCD , 2021, 2102.07231.

[31]  J. Andersen,et al.  Quark, pion and axial condensates in three-flavor finite isospin chiral perturbation theory , 2020, The European Physical Journal C.

[32]  D. Hou,et al.  Phenomenological QCD equations of state for neutron star dynamics: Nuclear-2SC continuity and evolving effective couplings , 2020, Physical Review D.

[33]  T. Kojo QCD equations of state and speed of sound in neutron stars , 2020, AAPPS Bulletin.

[34]  K. Fukushima,et al.  Equation of state of cold and dense QCD matter in resummed perturbation theory , 2020, Physical Review D.

[35]  J. Andersen,et al.  Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature , 2020, The European Physical Journal C.

[36]  W. Weise,et al.  Hard-core deconfinement and soft-surface delocalization from nuclear to quark matter , 2020, Physical Review D.

[37]  D. Duarte,et al.  Excluded-volume model for quarkyonic matter: Three-flavor baryon-quark mixture , 2020 .

[38]  D. Duarte,et al.  Excluded-volume model for quarkyonic matter. II. Three-flavor shell-like distribution of baryons in phase space , 2020, 2007.08098.

[39]  J. Liao,et al.  A field theoretical model for quarkyonic matter , 2020, Journal of High Energy Physics.

[40]  Jian Liang,et al.  Lattice calculation of pion form factors with overlap fermions , 2020, Physical Review D.

[41]  Tianqi Zhao,et al.  Quarkyonic matter equation of state in beta-equilibrium , 2020, Physical Review D.

[42]  J. Andersen,et al.  Quark and pion condensates at finite isospin density in chiral perturbation theory , 2020, The European Physical Journal C.

[43]  S. Sen,et al.  Dynamically generated momentum space shell structure of quarkyonic matter via an excluded volume model , 2020, Physical Review C.

[44]  Yong-Liang Ma,et al.  Towards the hadron–quark continuity via a topology change in compact stars , 2019 .

[45]  J. Andersen,et al.  QCD at finite isospin density: Chiral perturbation theory confronts lattice data , 2019, 1909.01131.

[46]  T. Kojo,et al.  Gluon propagator in two-color dense QCD: Massive Yang-Mills approach at one loop , 2019, Physical Review D.

[47]  A. Vuorinen,et al.  Evidence for quark-matter cores in massive neutron stars , 2019, Nature Physics.

[48]  G. Baym,et al.  New Neutron Star Equation of State with Quark–Hadron Crossover , 2019, The Astrophysical Journal.

[49]  L. Mclerran,et al.  Quarkyonic Matter and Neutron Stars. , 2018, Physical review letters.

[50]  K. Sengstock BCS-BEC Crossover , 2018, Peking University-World Scientific Advanced Physics Series.

[51]  J. Andersen,et al.  Pion condensation and the QCD phase diagram at finite isospin density , 2018, Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018).

[52]  J. Andersen,et al.  Pion condensation and phase diagram in the Polyakov-loop quark-meson model , 2018, Physical Review D.

[53]  G. Baym,et al.  From hadrons to quarks in neutron stars: a review , 2017, Reports on progress in physics. Physical Society.

[54]  I. Caprini,et al.  Electromagnetic Charge Radius of the Pion at High Precision. , 2017, Physical review letters.

[55]  J. Andersen,et al.  On-shell parameter fixing in the quark-meson model , 2016, 1612.03668.

[56]  S. Brodsky,et al.  On the interface between perturbative and nonperturbative QCD , 2016, 1601.06568.

[57]  E. Fraga,et al.  Perturbative thermodynamics at nonzero isospin density for cold QCD , 2015, 1511.09457.

[58]  C. Davies,et al.  Size of the pion from full lattice QCD with physical u , d , s and c quarks , 2015, 1511.07382.

[59]  T. Kojo,et al.  THE QUARKYONIC STAR , 2015, 1509.00356.

[60]  T. Hatsuda,et al.  Hyperon puzzle, hadron-quark crossover and massive neutron stars , 2015, 1508.04861.

[61]  T. Kojo Phenomenological neutron star equations of state , 2015, 1508.04408.

[62]  T. Hatsuda,et al.  Hadron-Quark Crossover and Hot Neutron Stars at Birth , 2015, 1506.00984.

[63]  G. Baym,et al.  Phenomenological QCD equation of state for massive neutron stars , 2014, 1412.1108.

[64]  P. Törmä,et al.  Quantum Gas Experiments - Exploring Many-Body States , 2014 .

[65]  S. Brodsky,et al.  Connecting the Hadron Mass Scale to the Fundamental Mass Scale of Quantum Chromodynamics , 2014, 1409.5488.

[66]  A. Steiner,et al.  Sound velocity bound and neutron stars. , 2014, Physical review letters.

[67]  T. Hatsuda,et al.  Hadron-quark crossover and massive hybrid stars , 2012, 1212.6803.

[68]  L. Smekal,et al.  Fluctuations in the quark-meson model for QCD with isospin chemical potential , 2012, 1207.0400.

[69]  T. Hatsuda,et al.  HADRON–QUARK CROSSOVER AND MASSIVE HYBRID STARS WITH STRANGENESS , 2012, 1205.3621.

[70]  P. Romatschke,et al.  Cold quark matter , 2009, 0912.1856.

[71]  L. Mclerran,et al.  Phases of cold, dense quarks at large N(c) , 2007, 0706.2191.

[72]  G. Baym,et al.  New critical point induced by the axial anomaly in dense QCD. , 2006, Physical review letters.

[73]  A. Thomas,et al.  Nucleon and hadron structure changes in the nuclear medium and the impact on observables , 2005, hep-ph/0506314.

[74]  M. Polyakov Generalized parton distributions and strong forces inside nucleons and nuclei , 2002, hep-ph/0210165.

[75]  M. Stephanov,et al.  QCD-like Theories at Finite Baryon and Isospin Density , 2000, hep-ph/0012274.

[76]  U. Tokyo,et al.  In-mediumππcorrelation induced by partial restoration of chiral symmetry , 2000, hep-ph/0008076.

[77]  M. Stephanov,et al.  QCD at finite isospin density. , 2000, Physical review letters.

[78]  D. Son Superconductivity by long range color magnetic interaction in high density quark matter , 1998, hep-ph/9812287.

[79]  F. Wilczek,et al.  CONTINUITY OF QUARK AND HADRON MATTER , 1998, hep-ph/9811473.

[80]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[81]  A. Vainshtein,et al.  QCD and Resonance Physics: Applications , 1979 .

[82]  A. Vainshtein,et al.  QCD and resonance physics. theoretical foundations , 1979 .

[83]  L. Mclerran,et al.  Quark star phenomenology , 1978 .

[84]  L. Mclerran,et al.  Fermions and gauge vector mesons at finite temperature and density. II. The ground-state energy of a relativistic electron gas , 1977 .

[85]  L. Mclerran,et al.  Fermions and gauge vector mesons at finite temperature and density. I. Formal techniques , 1977 .

[86]  K. Cheng Theory of Superconductivity , 1948, Nature.

[87]  A. Leggett,et al.  The BEC-BCS Crossover: Some History and Some General Observations , 2012 .

[88]  D. Geesaman,et al.  The Nuclear EMC Effect , 1995 .