A xylophone configuration for a third-generation gravitational wave detector

Achieving the demanding sensitivity and bandwidth, envisaged for third-generation gravitational wave (GW) observatories, is extremely challenging with a single broadband interferometer. Very high optical powers (megawatts) are required to reduce the quantum noise contribution at high frequencies, while the interferometer mirrors have to be cooled to cryogenic temperatures in order to reduce thermal noise sources at low frequencies. To resolve this potential conflict of cryogenic test masses with high thermal load, we present a conceptual design for a 2-band xylophone configuration for a third-generation GW observatory, composed of a high-power, high-frequency interferometer and a cryogenic low-power, low-frequency instrument. Featuring inspiral ranges of 3200 Mpc and 38 000 Mpc for binary neutron stars and binary black holes coalesences, respectively, we find that the potential sensitivity of xylophone configurations can be significantly wider and better than what is possible in a single broadband interferometer.

[1]  K. Somiya,et al.  Coating thermal noise of a finite-size cylindrical mirror , 2009, 0903.2902.

[2]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[3]  Andreas Freise,et al.  Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors , 2009, 0901.4931.

[4]  A. Perreca,et al.  Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.

[5]  M. Fejer,et al.  Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2 , 2008, 0802.2686.

[6]  Benno Willke,et al.  Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector , 2007 .

[7]  B. Mours,et al.  Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes , 2006 .

[8]  M. Fejer,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.

[9]  M. M. Casey,et al.  The GEO-HF project , 2006 .

[10]  D. Sigg,et al.  Status of the LIGO detectors , 2006 .

[11]  Helena Armandula,et al.  Thermal noise from optical coatings in gravitational wave detectors. , 2006, Applied optics.

[12]  V. Pierro,et al.  Analytic structure of a family of hyperboloidal beams of potential interest for advanced LIGO , 2006, gr-qc/0602074.

[13]  Karsten Danzmann,et al.  Experimental characterization of frequency-dependent squeezed light , 2005, 0706.4479.

[14]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  R. DeSalvo Lower frequency companions for the Advanced LIGO gravitational wave interferometric detectors: an observational opportunity? , 2004 .

[16]  R. DeSalvo,et al.  Proposal for lower frequency companions for the advanced LIGO Gravitational Wave Interferometric Detectors , 2004 .

[17]  Takayuki Tomaru,et al.  Design and construction status of CLIO , 2003 .

[18]  Takayuki Tomaru,et al.  MECHANICAL QUALITY FACTOR OF A CRYOGENIC SAPPHIRE TEST MASS FOR GRAVITATIONAL WAVE DETECTORS , 1999 .

[19]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .