Dendrite initiation and propagation in lithium metal solid-state batteries

[1]  Jun Yu Li,et al.  A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries , 2022, Advanced Energy Materials.

[2]  J. Janek,et al.  In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMS , 2022, Advanced Materials Interfaces.

[3]  J. Sakamoto,et al.  The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells , 2022, Journal of Power Sources.

[4]  L. Nazar,et al.  High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes , 2022, Nature Energy.

[5]  J. Tarascon,et al.  In Search of the Best Solid Electrolyte-Layered Oxide Pairing for Assembling Practical All-Solid-State Batteries , 2021, ACS Applied Energy Materials.

[6]  Hyun‐Wook Lee,et al.  Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries. , 2021, ACS applied materials & interfaces.

[7]  Y. Meng,et al.  Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence , 2021, Nature Nanotechnology.

[8]  J. Janek,et al.  Operando analysis of the molten Li|LLZO interface: Understanding how the physical properties of Li affect the critical current density , 2021 .

[9]  Boyang Liu,et al.  Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells , 2021, Nature Materials.

[10]  Dipan Kundu,et al.  The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solid‐State Batteries: A Case Study with Li6PS5Cl Solid Electrolyte , 2021, Advanced Materials Interfaces.

[11]  M. Bazant,et al.  Large-Deformation Plasticity and Fracture Behavior of Pure Lithium Under Various Stress States , 2020, Acta Materialia.

[12]  Wei Weng,et al.  Densified Li6PS5Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Battery. , 2020, Nano letters.

[13]  Asma Sharafi,et al.  Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility , 2020, Matter.

[14]  G. Ceder,et al.  An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects , 2020, Journal of The Electrochemical Society.

[15]  R. McMeeking,et al.  Dendritic cracking in solid electrolytes driven by lithium insertion , 2019 .

[16]  G. Bucci,et al.  Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: The role of interfacial resistance and surface defects , 2019, Journal of Power Sources.

[17]  Erik A. Wu,et al.  Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[18]  P. Xiao,et al.  Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending , 2019, Surface and Coatings Technology.

[19]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[20]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[21]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[22]  J. Sakamoto,et al.  Elastic, plastic, and creep mechanical properties of lithium metal , 2018, Journal of Materials Science.

[23]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[24]  V. Ferguson,et al.  Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte. , 2016, ACS applied materials & interfaces.

[25]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[26]  Xiaodong Li,et al.  Origin of flaw-tolerance in nacre , 2013, Scientific Reports.

[27]  M. Anglada,et al.  Evaluation of fracture toughness of small volumes by means of cube-corner nanoindentation , 2012 .

[28]  Taihua Zhang,et al.  A method to determine fracture toughness using cube-corner indentation , 2010 .

[29]  J. W. Foulk,et al.  On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength, and toughness , 2008 .

[30]  D. Maio,et al.  Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams , 2005 .

[31]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[32]  I. Doltsinis,et al.  Modelling the damage of porous ceramics under internal pressure , 2001 .

[33]  H. Fricker Why Does Charge Concentrate on Points , 1989 .

[34]  L. C. Jonghe,et al.  Initiation of mode I degradation in sodium-beta alumina electrolytes , 1982 .

[35]  L. C. Jonghe,et al.  Slow degradation and electron conduction in sodium/beta-aluminas , 1981 .

[36]  G. Ceder,et al.  Understanding Metal Propagation in Solid Electrolytes Due to Mixed Ionic–Electronic Conduction , 2021, SSRN Electronic Journal.