On the Erdős-Sós Conjecture for graphs on n = k + 4 vertices

The Erdős-Sos Conjecture states that if G is a simple graph of order n with average degree more than k  − 2,  then G contains every tree of order k . In this paper, we prove that Erds-Sos Conjecture is true for n  =  k  + 4 .

[1]  Edward Dobson,et al.  Constructing trees in graphs with no K2, s , 2007, J. Graph Theory.

[2]  Min Wang,et al.  A Result of Erdos-Sos Cojecture , 2000, Ars Comb..

[3]  Genghua Fan,et al.  The Erdös-Sós conjecture for spiders , 2007, Discret. Math..

[4]  Edward Dobson,et al.  The Erdős-Sós conjecture for graphs of girth 5 , 1996, Discret. Math..

[5]  Genghua Fan,et al.  The Erdős-Sós conjecture for spiders of large size , 2013, Discret. Math..

[6]  Mariusz Wozniak,et al.  The Erdös-Sós Conjecture for Graphs withoutC4 , 1997, J. Comb. Theory, Ser. B.

[7]  Penny E. Haxell Tree embeddings , 2001, J. Graph Theory.

[8]  Hian Poh Yap,et al.  Packing a tree with a graph of the same size , 1985, J. Graph Theory.

[9]  A. F. Sidorenko,et al.  Asymptotic solution for a new class of forbiddenr-graphs , 1989, Comb..

[10]  Paul Erdös,et al.  Some problems in graph theory , 1974 .

[11]  Edward Dobson Constructing Trees In Graphs Whose Complement Has No K2, S , 2002, Comb. Probab. Comput..

[12]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[13]  Andrew McLennan,et al.  The Erdős‐Sós Conjecture for trees of diameter four , 2005, Journal of Graph Theory.

[14]  Mariusz Wozniak On the Erdös-Sós conjecture , 1996, J. Graph Theory.

[15]  Bing Zhou,et al.  A NOTE ON THE ERDÖS-SÖS CONJECTURE , 1984 .

[16]  Nancy Eaton,et al.  On the Erdős-Sós conjecture for graphs having no path with k+4 vertices , 2013, Discret. Math..

[17]  Lingli Sun The Erdős-Sós conjecture for spiders of diameter 9 , 2007, Australas. J Comb..

[18]  Gary Tiner,et al.  On the Erd˝ Os-sós Conjecture for Graphs on N = K + 3 Vertices , 2022 .

[19]  Nancy Eaton,et al.  On the Erdos-Sos Conjecture and graphs with large minimum degree , 2010, Ars Comb..