A Finite Subelement Generalization of the Variational Nodal Method
暂无分享,去创建一个
G. Palmiotti | T. A. Taiwo | N. Tsoulfanidis | M. A. Smith | N. Tsoulfanidis | G. Palmiotti | T. Taiwo | M. Smith | E. E. Lewis
[1] R. D. Lawrence. PROGRESS IN NODAL METHODS FOR THE SOLUTION OF THE NEUTRON DIFFUSION AND TRANSPORT EQUATIONS , 1986 .
[2] C. B. Carrico,et al. Variational nodal formulation for the spherical harmonics equations , 1996 .
[3] C. B. Carrico,et al. VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation , 1995 .
[4] G. Rumyantsev. Boundary conditions in the spherical harmonic method , 1961 .
[5] A. Badruzzaman. Nodal methods in transport theory , 1990 .
[6] Giuseppe Palmiotti,et al. Simplified spherical harmonics in the variational nodal method , 1997 .
[7] C. B. Carrico,et al. Three-Dimensional Variational Nodal Transport Methods for Cartesian, Triangular, and Hexagonal Criticality Calculations , 1992 .
[8] Giuseppe Palmiotti,et al. Space-angle approximations in the variational nodal method. , 1999 .
[9] E. Lewis,et al. Benchmark specification for Deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial homogenisation (C5G7 MOX) , 2001 .