Techniques for low-power high-performance ADCs

Analog-to-digital converters (ADCs) are essential building blocks in many electronic systems which require digital signal processing and storage of analog signals. Traditionally, ADCs are considered a power hungry circuit. This thesis investigates ADC design techniques to achieve high-performance with low power consumption. Two designs are demonst rated. The first design is a voltage scalable zero-crossing based pipelined ADC. The zero-crossing based circuit technique is modified and optimized to improve the limited ADC resolution in nano-scaled CMOS technology. The proposed unidirectional charge transfer scheme allows faster and more energy efficient operation by eliminating unnecessary charging and discharging of the capacitors. Furthermore, the reduced transient disturbance at the beginning of the fine charge transfer phase improves the accuracy of operation. Power supply scaling enhances power efficiency at low sampling rates much like in digital circuits and widens the conversion frequency range where the ADC operates with highest efficiency. The second design is a high speed time-interleaved (TI) SAR ADC with background timing-skew calibration. A time-interleaved structure is employed to improve the effective sampling rate without sacrificing energy efficiency. SAR ADCs are used for each channel to make good use of device scaling. The proposed ADC architecture incorporates a flash ADC operating at the full sampling rate of the TI ADC. The flash ADC output is multiplexed to resolve MSBs of the SAR channels. Because the full-speed flash ADC does not suffer from timing-skew errors, the flash ADC output is also used as the timing reference to estimate the timing-skew of the SAR ADCs. Thesis Supervisor: Anantha P. Chandrakasan Title: Professor Thesis Supervisor: Hae-Seung Lee Title: Professor

[1]  Un-Ku Moon,et al.  A 6b stochastic flash analog-to-digital converter without calibration or reference ladder , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[2]  Gabor C. Temes,et al.  A Noise-Coupled Time-Interleaved Delta-Sigma ADC With 4.2 MHz Bandwidth, ${-}$ 98 dB THD, and 79 dB SNDR , 2008, IEEE Journal of Solid-State Circuits.

[3]  Franco Maloberti,et al.  A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and resistive DAC in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[4]  Seung-Hoon Lee,et al.  A Re-configurable 0.5V to 1.2V, 10MS/s to 100MS/s, Low-Power 10b 0.13um CMOS Pipeline ADC , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[5]  Jaeha Kim,et al.  Simulation and Analysis of Random Decision Errors in Clocked Comparators , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Soon-Kyun Shin,et al.  A fully-differential zero-crossing-based 1.2V 10b 26MS/s pipelined ADC in 65nm CMOS , 2008, 2008 IEEE Symposium on VLSI Circuits.

[7]  L. Kushner,et al.  A process-scalable low-power charge-domain 13-bit pipeline ADC , 2008, 2008 IEEE Symposium on VLSI Circuits.

[8]  Hae-Seung Lee,et al.  A 12b, 50 MS/s, Fully Differential Zero-Crossing Based Pipelined ADC , 2009, IEEE Journal of Solid-State Circuits.

[9]  B. Murmann,et al.  A 9.4-bit, 50-MS/s, 1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification , 2009, IEEE Journal of Solid-State Circuits.

[10]  Brian P. Ginsburg,et al.  An energy-efficient charge recycling approach for a SAR converter with capacitive DAC , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[11]  A. Montijo,et al.  A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 /spl mu/m CMOS , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[12]  Jon Guerber,et al.  Merged capacitor switching based SAR ADC with highest switching energy-efficiency , 2010 .

[13]  Arthur H. M. van Roermund,et al.  A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[14]  Un-Ku Moon,et al.  Design of a Split-CLS Pipelined ADC With Full Signal Swing Using an Accurate But Fractional Signal Swing Opamp , 2010, IEEE Journal of Solid-State Circuits.

[15]  Anantha Chandrakasan,et al.  A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications , 2013, IEEE Journal of Solid-State Circuits.

[16]  Hae-Seung Lee,et al.  Zero-crossing detector based reconfigurable analog system , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[17]  Unto K. Laine,et al.  Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..

[18]  Yuan-Ching Lien,et al.  A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[19]  A. Boni,et al.  LVDS I/O interface for Gb/s-per-pin operation in 0.35-μ/m CMOS , 2001, IEEE J. Solid State Circuits.

[20]  Boris Murmann,et al.  Background Calibration of Time-Interleaved Data Converters , 2011 .

[21]  Huawen Jin,et al.  A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs , 2000 .

[22]  Hae-Seung Lee,et al.  Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies , 2006, IEEE Journal of Solid-State Circuits.

[23]  N. P. van der Meijs,et al.  A 26 $\mu$ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios , 2011, IEEE Journal of Solid-State Circuits.

[24]  Behzad Razavi,et al.  A 10-b 1-GHz 33-mW CMOS ADC , 2013, IEEE Journal of Solid-State Circuits.

[25]  Takashi Morie,et al.  A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[26]  Kazuki Sobue,et al.  Ring Amplifiers for Switched Capacitor Circuits , 2012, IEEE Journal of Solid-State Circuits.

[27]  Matthew C. Guyton Low-voltage ZCB delta-sigma analog-to-digital converter , 2010 .

[28]  Matthew Martin,et al.  A 14b 2.5GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[29]  Yue Jack Chu High performance zero-crossing based pipelined analog-to-digital converters , 2011 .

[30]  David A. Johns,et al.  A Low-Power Capacitive Charge Pump Based Pipelined ADC , 2010, IEEE Journal of Solid-State Circuits.

[31]  Ramya Ramachandran Wideband A / D Converter Front-End Design Considerations When to Use a Double Transformer Configuration , 2006 .

[32]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[33]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[34]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.

[35]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[36]  H.-S. Lee,et al.  A 450 MS/s 10-bit time-interleaved zero-crossing based ADC , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[37]  Hae-Seung Lee,et al.  Offset cancellation for zero crossing based circuits , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[38]  Stephen H. Lewis,et al.  Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Hae-Seung Lee,et al.  Background Calibration of Pipelined ADCs Via Decision Boundary Gap Estimation , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Gregory W. Wornell,et al.  Blind Calibration of Timing Skew in Time-Interleaved Analog-to-Digital Converters , 2009, IEEE Journal of Selected Topics in Signal Processing.

[41]  Soon-Kyun Shin,et al.  A 12b 200MS/s frequency scalable zero-crossing based pipelined ADC in 55nm CMOS , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[42]  Hae-Seung Lee,et al.  A zero-crossing based 12b 100MS/s pipelined ADC with decision boundary gap estimation calibration , 2010, 2010 Symposium on VLSI Circuits.

[43]  John Kenneth Fiorenza A comparator-based switched-capacitor pipelined analog-to-digital converter , 2007 .

[44]  Sanroku Tsukamoto,et al.  A 10b 50MS/s 820µW SAR ADC with on-chip digital calibration , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[45]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[46]  A. Chandrakasan,et al.  A 180-mV subthreshold FFT processor using a minimum energy design methodology , 2005, IEEE Journal of Solid-State Circuits.

[47]  Kang,et al.  An 8-GSa/s 8-bit ADC System , 1997, Symposium 1997 on VLSI Circuits.

[48]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[49]  Denis C. Daly,et al.  A 6-bit, 0.2 V to 0.9 V Highly Digital Flash ADC With Comparator Redundancy , 2009, IEEE Journal of Solid-State Circuits.

[50]  Wenbo Liu,et al.  A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[51]  Todd C. Sepke,et al.  Comparator design and analysis for comparator-based switched-capacitor circuits , 2006 .

[52]  P.R. Kinget,et al.  A 0.5-V 8-bit 10-Ms/s Pipelined ADC in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[53]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[54]  Chorng-Kuang Wang,et al.  A 8-bit 500-KS/s low power SAR ADC for bio-medical applications , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[55]  Borivoje Nikolic,et al.  A 2.8GS/s 44.6mW time-interleaved ADC achieving 50.9dB SNDR and 3dB effective resolution bandwidth of 1.5GHz in 65nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[56]  Jan Craninckx,et al.  A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[57]  Christian Vogel,et al.  The impact of combined channel mismatch effects in time-interleaved ADCs , 2005, IEEE Transactions on Instrumentation and Measurement.

[58]  Lane Brooks,et al.  Circuits and algorithms for pipelined ADCs in scaled CMOS technologies , 2008 .

[59]  Hae-Seung Lee,et al.  A 9 b charge-to-digital converter for integrated image sensors , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[60]  Fredrik Gustafsson,et al.  Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  W. Black,et al.  Time interleaved converter arrays , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[62]  Hae-Seung Lee,et al.  A 12 b 5-to-50 MS/s 0.5-to-1 V Voltage Scalable Zero-Crossing Based Pipelined ADC , 2012, IEEE Journal of Solid-State Circuits.

[63]  Soon-Jyh Chang,et al.  A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[64]  Mohamed Dessouky,et al.  Very low-voltage digital-audio /spl Delta//spl Sigma/ modulator with 88-dB dynamic range using local switch bootstrapping , 2001 .