Efficiency optimization of electric motors: a comparative study of stochastic algorithms

This paper presents a comparative study of three popular, population based stochastic algorithms viz. Genetic Algorithms, Particle Swarm Optimization and Differential Evolution for maximizing the ef- ficiency of electric motors. The simulation results for a hypothetical textile mill load diagram show that although all the three algorithms gave more or less similar results in comparison to each other, their perfor- mance is better than the traditional techniques.

[1]  Andrea Cavagnino,et al.  Induction Motor Efficiency Improvements with Low Additional Production Costs , 2004 .

[2]  D. Karaboga,et al.  A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm , 2004 .

[3]  G. Chowell,et al.  Comparative estimation of the reproduction number for pandemic influenza from daily case notification data , 2007, Journal of The Royal Society Interface.

[4]  Adil M. Bagirov,et al.  Comparative analysis of the cutting angle and simulated annealing methods in global optimization , 2003 .

[5]  H. Nishiura Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918–19 , 2007, Theoretical biology & medical modelling.

[6]  R.H.A. Hamid,et al.  New Technique for Maximum Efficiency of Induction Motors Based on Particle Swarm Optmization (PSO) , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[7]  Juan M. Moreno-Eguilaz,et al.  Neural network flux optimization using a model of losses in induction motor drives , 2006, Math. Comput. Simul..

[8]  Sheldon M. Ross,et al.  Introduction to Probability Models (4th ed.). , 1990 .

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Yaohang Li,et al.  A decentralized parallel implementation for parallel tempering algorithm , 2009, Parallel Comput..

[11]  R.H.A. Hamid,et al.  Optimal Operation of Induction Motors Using Artificial Neural Network Based on Particle Swarm Optimization (PSO) , 2006, 2006 IEEE International Conference on Industrial Technology.

[12]  Punam Mangtani,et al.  Estimates of the reproduction numbers of Spanish influenza using morbidity data. , 2007, International journal of epidemiology.

[13]  Armin R W Elbers,et al.  Estimating the day of highly pathogenic avian influenza (H7N7) virus introduction into a poultry flock based on mortality data. , 2007, Veterinary research.

[14]  Christopher T. McCaw,et al.  A Biological Model for Influenza Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity , 2007, PloS one.

[15]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Guillermo O. García,et al.  An efficient controller for an adjustable speed induction motor drive , 1994, IEEE Trans. Ind. Electron..

[17]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[18]  J. Hyman,et al.  Transmission Dynamics of the Great Influenza Pandemic of 1918 in Geneva, Switzerland: Assessing the Effects of Hypothetical Interventions , 2022 .

[19]  Mark A. Best,et al.  Bioinformatics: the Machine Learning Approach, 2nd edn , 2004 .

[20]  Holger H. Hoos,et al.  A replica exchange Monte Carlo algorithm for protein folding in the HP model , 2007, BMC Bioinformatics.

[21]  Nick Wilson,et al.  Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling , 2006 .

[22]  Gregory R. Grant,et al.  Bioinformatics - The Machine Learning Approach , 2000, Comput. Chem..

[23]  Neil M. Ferguson,et al.  The effect of public health measures on the 1918 influenza pandemic in U.S. cities , 2007, Proceedings of the National Academy of Sciences.

[24]  Cécile Viboud,et al.  Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. , 2006, Vaccine.

[25]  Iordanis Kioskeridis,et al.  Loss minimization in induction motor adjustable-speed drives , 1996, IEEE Trans. Ind. Electron..

[26]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[28]  A. Cavagnino,et al.  Induction motor efficiency measurements in accordance to IEEE 112-B, IEC 34-2 and JEC 37 international standards , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  M. Pagano,et al.  Transmissibility of the Influenza Virus in the 1918 Pandemic , 2008, PloS one.

[31]  J. Hyman,et al.  Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. , 2006, Vaccine.

[32]  N. Margaris,et al.  Loss minimization in scalar-controlled induction motor drives with search controllers , 1996 .

[33]  David J. Philp,et al.  Quantifying social distancing arising from pandemic influenza , 2007, Journal of The Royal Society Interface.

[34]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[35]  Yukito Iba EXTENDED ENSEMBLE MONTE CARLO , 2001 .

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  János D. Pintér,et al.  Global optimization in action , 1995 .

[38]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[39]  C Thanga Raj Improving Energy Efficiency in Partial Loaded Induction Motor- Using Power Electronic Controllers , 2006 .

[40]  Dong Hwa Kim GA-PSO based vector control of indirect three phase induction motor , 2007, Appl. Soft Comput..

[41]  Yaohang Li,et al.  Hybrid parallel tempering and simulated annealing method , 2009, Appl. Math. Comput..

[42]  J. Medlock,et al.  Optimizing Influenza Vaccine Distribution , 2009, Science.

[43]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[44]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[45]  Caterina Rizzo,et al.  Epidemic patch models applied to pandemic influenza: contact matrix, stochasticity, robustness of predictions. , 2009, Mathematical biosciences.

[46]  C. Liao,et al.  Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection. , 2009, Indoor air.

[47]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[48]  Emma S McBryde,et al.  Influenza: accounting for prior immunity. , 2009, Science.

[49]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[50]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[51]  X. Roboam,et al.  Energy optimization of induction motor drives , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[52]  J. M. Daly,et al.  The effects of strain heterology on the epidemiology of equine influenza in a vaccinated population , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  Sadegh Vaez-Zadeh,et al.  A CONTINUOUS EFFICIENCY OPTIMIZATION CONTROLLER FOR INDUCTION MOTOR DRIVES , 2005 .

[54]  James M. McCaw,et al.  Understanding influenza transmission, immunity and pandemic threats , 2009, Influenza and other respiratory viruses.

[55]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[56]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[57]  C. Liao,et al.  Modelling control measures to reduce the impact of pandemic influenza among schoolchildren , 2007, Epidemiology and Infection.

[58]  J. Robins,et al.  Transmissibility of 1918 pandemic influenza , 2004, Nature.

[59]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[60]  V. Lee,et al.  Effectiveness of Neuraminidase Inhibitors for Preventing Staff Absenteeism during Pandemic Influenza , 2007, Emerging infectious diseases.