Interferometry-based modal analysis with finite aperture effects

We analyze the effects of aperture finiteness on interferograms recorded to unveil the modal content of optical beams in arbitrary bases using generalized interferometry. We develop a scheme for modal reconstruction from interferometric measurements that accounts for the ensuing clipping effects. Clipping-cognizant reconstruction is shown to yield significant performance gains over traditional schemes that overlook such effects that do arise in practice.

[1]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[2]  Aristide Dogariu,et al.  Compressive correlation imaging with random illumination. , 2015, Optics letters.

[3]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[4]  Vicente Durán,et al.  Image transmission through dynamic scattering media by single-pixel photodetection. , 2014, Optics express.

[5]  Theo Lasser,et al.  Compressed imaging by sparse random convolution. , 2016, Optics express.

[6]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[7]  George Atia,et al.  Signal Reconstruction from Interferometric Measurements under Sensing Constraints , 2017, Signal Process..

[8]  L. B. Almeida Product and Convolution Theorems for the Fractional Fourier Transform , 1997, IEEE Signal Processing Letters.

[9]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[10]  M. Brezinski Optical coherence tomography for identifying unstable coronary plaque. , 2006, International journal of cardiology.

[11]  B. Saleh,et al.  Generalized optical interferometry for modal analysis in arbitrary degrees of freedom. , 2012, Optics letters.

[12]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[13]  Waheed U. Bajwa,et al.  From modeling to hardware: an experimental evaluation of image plane and Fourier plane coded compressive optical imaging , 2017 .

[14]  Vicente Durán,et al.  Compressive holography with a single-pixel detector. , 2013, Optics letters.

[15]  E Tajahuerce,et al.  Compressive imaging in scattering media. , 2015, Optics express.

[16]  Loïc Denis,et al.  Inline hologram reconstruction with sparsity constraints. , 2009, Optics letters.

[17]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[18]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[19]  Daniel Flamm,et al.  Mode analysis with a spatial light modulator as a correlation filter. , 2012, Optics letters.

[20]  Wenlin Gong,et al.  Super-resolution far-field ghost imaging via compressive sampling , 2009, 0911.4750.

[21]  George Atia,et al.  Compressive optical interferometry , 2018, Optics express.

[22]  Zongfu Yu,et al.  Spectral analysis based on compressive sensing in nanophotonic structures. , 2014, Optics express.

[23]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[24]  S. Newton,et al.  Spectral analysis of optical mixing measurements , 1989 .

[25]  O. Shapira,et al.  Complete modal decomposition for optical waveguides , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[26]  J W Nicholson,et al.  Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. , 2008, Optics express.

[27]  E. Tajahuerce,et al.  Single-pixel digital holography with phase-encoded illumination. , 2017, Optics express.

[28]  Ayman F. Abouraddy,et al.  Basis-neutral Hilbert-space analyzers , 2016, Scientific Reports.

[29]  Soo-Chang Pei,et al.  Eigenfunctions of linear canonical transform , 2002, IEEE Trans. Signal Process..

[30]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[31]  Daniel J. Lum,et al.  Simultaneous measurement of complementary observables with compressive sensing. , 2014, Physical review letters.

[32]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[33]  Daniel J. Lum,et al.  Compressively characterizing high-dimensional entangled states with complementary, random filtering , 2016, 1605.04792.

[34]  Michael Elad,et al.  Advances and challenges in super‐resolution , 2004, Int. J. Imaging Syst. Technol..

[35]  Wenlin Gong,et al.  High-resolution far-field ghost imaging via sparsity constraint , 2015, Scientific Reports.

[36]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[37]  George K. Atia,et al.  Efficient modal analysis using compressive optical interferometry. , 2015, Optics express.