Skew Convolutional Codes
暂无分享,去创建一个
Onur Günlü | Gerhard Kramer | Vladimir Sidorenko | Wenhui Li | G. Kramer | V. Sidorenko | Wenhui Li | O. Günlü
[1] O. Ore. Theory of Non-Commutative Polynomials , 1933 .
[2] Robert Mario Fano,et al. A heuristic discussion of probabilistic decoding , 1963, IEEE Trans. Inf. Theory.
[3] Andrew J. Viterbi,et al. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.
[4] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[5] Carlos R. P. Hartmann,et al. An optimum symbol-by-symbol decoding rule for linear codes , 1976, IEEE Trans. Inf. Theory.
[6] M. Mooser. Some periodic convolutional codes better than any fixed code , 1983, IEEE Trans. Inf. Theory.
[7] Khaled A. S. Abdel-Ghaffar,et al. Finite-state codes , 1988, IEEE Trans. Inf. Theory.
[8] Pil Joong Lee. There are many good periodically time-varying convolutional codes , 1989, IEEE Trans. Inf. Theory.
[9] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[10] Nicolas Bourbaki,et al. Non Commutative Algebra , 1994 .
[11] Vladimir Sidorenko,et al. Decoding of convolutional codes using a syndrome trellis , 1994, IEEE Trans. Inf. Theory.
[12] Alexander Vardy,et al. Optimal sectionalization of a trellis , 1996, IEEE Trans. Inf. Theory.
[13] T. Aaron Gulliver,et al. A Link Between Quasi-Cyclic Codes and Convolutional Codes , 1998, IEEE Trans. Inf. Theory.
[14] Joachim Rosenthal,et al. Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.
[15] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[16] Christian Weiss,et al. On dualizing trellis-based APP decoding algorithms , 2002, IEEE Trans. Commun..
[17] R. Jordan,et al. An upper bound on the slope of convolutional codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[18] Heide Gluesing-Luerssen,et al. Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .
[19] Felix Ulmer,et al. Coding with skew polynomial rings , 2009, J. Symb. Comput..
[20] Felix Ulmer,et al. Codes as Modules over Skew Polynomial Rings , 2009, IMACC.
[21] Ali Ghrayeb,et al. On the Construction of Skew Quasi-Cyclic Codes , 2008, IEEE Transactions on Information Theory.
[22] Sudharshan Srinivasan,et al. Decoding of High Rate Convolutional Codes Using the Dual Trellis , 2010, IEEE Transactions on Information Theory.
[23] Jessica J. Fridrich,et al. Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes , 2011, IEEE Transactions on Information Forensics and Security.
[24] Robert M. Gray,et al. Coding for noisy channels , 2011 .
[25] Khmaies Ouahada. Nonbinary convolutional codes and modified M-FSK detectors for power-line communications channel , 2014, Journal of Communications and Networks.
[26] Vladimir Sidorenko,et al. Convolutional Codes in Rank Metric With Application to Random Network Coding , 2015, IEEE Transactions on Information Theory.
[27] Vladimir Sidorenko,et al. On Maximum-Likelihood Decoding of Time-Varying Trellis Codes , 2019, 2019 XVI International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY).
[28] Heide Gluesing-Luerssen,et al. Skew-Polynomial Rings and Skew-Cyclic Codes , 2019, ArXiv.
[29] Camilla Hollanti,et al. Private Streaming With Convolutional Codes , 2020, IEEE Transactions on Information Theory.
[30] Umberto Martínez-Peñas,et al. Sum-Rank BCH Codes and Cyclic-Skew-Cyclic Codes , 2020, IEEE Transactions on Information Theory.