Skew Convolutional Codes

A new class of convolutional codes, called skew convolutional codes, that extends the class of classical fixed convolutional codes, is proposed. Skew convolutional codes can be represented as periodic time-varying convolutional codes but have a description as compact as fixed convolutional codes. Designs of generator and parity check matrices, encoders, and code trellises for skew convolutional codes and their duals are shown. For memoryless channels, one can apply Viterbi or BCJR decoding algorithms, or a dualized BCJR algorithm, to decode skew convolutional codes.

[1]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[2]  Robert Mario Fano,et al.  A heuristic discussion of probabilistic decoding , 1963, IEEE Trans. Inf. Theory.

[3]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[4]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[5]  Carlos R. P. Hartmann,et al.  An optimum symbol-by-symbol decoding rule for linear codes , 1976, IEEE Trans. Inf. Theory.

[6]  M. Mooser Some periodic convolutional codes better than any fixed code , 1983, IEEE Trans. Inf. Theory.

[7]  Khaled A. S. Abdel-Ghaffar,et al.  Finite-state codes , 1988, IEEE Trans. Inf. Theory.

[8]  Pil Joong Lee There are many good periodically time-varying convolutional codes , 1989, IEEE Trans. Inf. Theory.

[9]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[10]  Nicolas Bourbaki,et al.  Non Commutative Algebra , 1994 .

[11]  Vladimir Sidorenko,et al.  Decoding of convolutional codes using a syndrome trellis , 1994, IEEE Trans. Inf. Theory.

[12]  Alexander Vardy,et al.  Optimal sectionalization of a trellis , 1996, IEEE Trans. Inf. Theory.

[13]  T. Aaron Gulliver,et al.  A Link Between Quasi-Cyclic Codes and Convolutional Codes , 1998, IEEE Trans. Inf. Theory.

[14]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[15]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[16]  Christian Weiss,et al.  On dualizing trellis-based APP decoding algorithms , 2002, IEEE Trans. Commun..

[17]  R. Jordan,et al.  An upper bound on the slope of convolutional codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[18]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[19]  Felix Ulmer,et al.  Coding with skew polynomial rings , 2009, J. Symb. Comput..

[20]  Felix Ulmer,et al.  Codes as Modules over Skew Polynomial Rings , 2009, IMACC.

[21]  Ali Ghrayeb,et al.  On the Construction of Skew Quasi-Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[22]  Sudharshan Srinivasan,et al.  Decoding of High Rate Convolutional Codes Using the Dual Trellis , 2010, IEEE Transactions on Information Theory.

[23]  Jessica J. Fridrich,et al.  Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes , 2011, IEEE Transactions on Information Forensics and Security.

[24]  Robert M. Gray,et al.  Coding for noisy channels , 2011 .

[25]  Khmaies Ouahada Nonbinary convolutional codes and modified M-FSK detectors for power-line communications channel , 2014, Journal of Communications and Networks.

[26]  Vladimir Sidorenko,et al.  Convolutional Codes in Rank Metric With Application to Random Network Coding , 2015, IEEE Transactions on Information Theory.

[27]  Vladimir Sidorenko,et al.  On Maximum-Likelihood Decoding of Time-Varying Trellis Codes , 2019, 2019 XVI International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY).

[28]  Heide Gluesing-Luerssen,et al.  Skew-Polynomial Rings and Skew-Cyclic Codes , 2019, ArXiv.

[29]  Camilla Hollanti,et al.  Private Streaming With Convolutional Codes , 2020, IEEE Transactions on Information Theory.

[30]  Umberto Martínez-Peñas,et al.  Sum-Rank BCH Codes and Cyclic-Skew-Cyclic Codes , 2020, IEEE Transactions on Information Theory.