A finite element approximation of the Griffith’s model in fracture mechanics

Summary.The Griffith model for the mechanics of fractures in brittle materials is consider in the weak formulation of SBD spaces. We suggest an approximation, in the sense of Γ−convergence, by a sequence of discrete functionals defined on finite elements spaces over structured and adaptive triangulations. The quasi-static evolution for boundary value problems is also taken into account and some numerical results are shown.

[1]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[2]  Marius Buliga,et al.  Energy Minimizing Brittle Crack Propagation , 1998 .

[3]  M. Negri The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional , 1999 .

[4]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[5]  Antonin Chambolle,et al.  A Density Result in Two-Dimensional Linearized Elasticity, and Applications , 2003 .

[6]  Maurizio Paolini,et al.  Numerical minimization¶of the Mumford–Shah functional , 2001 .

[7]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[8]  A. Chambolle,et al.  Discrete approximation of the Mumford-Shah functional in dimension two , 1999, ESAIM: Mathematical Modelling and Numerical Analysis.

[9]  Guido Cortesani,et al.  A density result in SBV with respect to non-isotropic energies , 1999 .

[10]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[11]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .

[12]  Andrea Braides,et al.  Non-local approximation of the Mumford-Shah functional , 1997 .

[13]  Guido Cortesani,et al.  Strong approximation ofGSBV functions by piecewise smooth functions , 1997, ANNALI DELL UNIVERSITA DI FERRARA.

[14]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Gianni Dal Maso,et al.  Fine Properties of Functions with Bounded Deformation , 1997 .

[17]  G. Sih,et al.  Mathematical theories of brittle fracture. , 1968 .

[18]  Rodica Toader,et al.  A Model for the Quasi-Static Growth¶of Brittle Fractures:¶Existence and Approximation Results , 2001 .

[19]  G. Bellettini,et al.  Compactness and lower semicontinuity properties in $SBD(\Omega)$ , 1998 .

[20]  Matteo Focardi,et al.  Finite difference approximation of energies in Fracture Mechanics , 2000 .