A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.

We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66+/-1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense is roughly equivalent to the underlying fixed-charge CHARMM22 force field.

[1]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[2]  P. Cummings,et al.  Vapor-liquid equilibrium simulations of the SCPDP model of water , 2002 .

[3]  Ab initio molecular dynamics study of liquid methanol , 2002, physics/0210123.

[4]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[5]  P. Cummings,et al.  Effect of the range of interactions on the properties of fluids. Phase equilibria in pure carbon dioxide, acetone, methanol, and water , 2002 .

[6]  José Elguero,et al.  Study of the methanol trimer potential energy surface , 1997 .

[7]  Yaochun Shen,et al.  Liquid interfaces: A study by sum-frequency vibrational spectroscopy , 1999 .

[8]  A. Luntz,et al.  The role of tunneling in precursor mediated dissociation: Alkanes on metal surfaces , 1992 .

[9]  Y. Shen,et al.  Surface properties probed by second-harmonic and sum-frequency generation , 1989, Nature.

[10]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[11]  Flexible Molecular Model of Methanol for a Molecular Dynamics Study of Liquid and Supercritical Conditions , 2003 .

[12]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[13]  L. F. Rull,et al.  Phase equilibria and critical behavior of square‐well fluids of variable width by Gibbs ensemble Monte Carlo simulation , 1992 .

[14]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[15]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[16]  A. Laubereau,et al.  Sum-frequency vibrational spectroscopy at the liquid—air interface of methanol. Water solutions , 1993 .

[17]  L. Dang,et al.  Many-body interactions in liquid methanol and its liquid/vapor interface: A molecular dynamics study , 2003 .

[18]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[19]  Akihiro Morita Water polarizability in condensed phase: Ab initio evaluation by cluster approach , 2002, J. Comput. Chem..

[20]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[21]  D. M. Dennison,et al.  The Methyl Alcohol Molecule and Its Microwave Spectrum , 1953 .

[22]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[23]  Jiali Gao,et al.  A Polarizable Intermolecular Potential Function for Simulation of Liquid Alcohols , 1995 .

[24]  D. Tildesley,et al.  Molecular dynamics simulation of the orthobaric densities and surface tension of water , 1995 .

[25]  Pastore,et al.  Theory of ab initio molecular-dynamics calculations. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[26]  J. Ilja Siepmann,et al.  Development of Polarizable Water Force Fields for Phase Equilibrium Calculations , 2000 .

[27]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[28]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[29]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[30]  Mauro C. C. Ribeiro,et al.  Fluctuating charge model for polyatomic ionic systems: A test case with diatomic anions , 1999 .

[31]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[32]  Jacek Korchowiec,et al.  Molecular hardness and softness parameters and their use in chemistry , 1988 .

[33]  O. Steinhauser,et al.  Computer simulation and the dielectric constant of polarizable polar systems , 1984 .

[34]  Noriyuki Yoshii,et al.  A molecular-dynamics study of the equation of state of water using a fluctuating-charge model , 2000 .

[35]  A. Soper,et al.  The structure of liquid methanol revisited: a neutron diffraction experiment at −80 °C and +25 °C , 1999 .

[36]  Carl L. Yaws,et al.  Thermodynamic and Physical Property Data , 1992 .

[37]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[38]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[39]  H. Davis Capillary waves and the mean field theory of interfaces , 1977 .

[40]  E. W. Washburn,et al.  International Critical Tables of Numerical Data, Physics, Chemistry and Technology , 1926 .

[41]  Joseph A Morrone,et al.  Ab initio molecular dynamics study of proton mobility in liquid methanol , 2002 .

[42]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[43]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[44]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[45]  A. D. Buckingham,et al.  A theory of the dielectric polarization of polar substances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  G. Somorjai,et al.  Polar ordering at the liquid-vapor interface of n-alcohols (C1-C8) , 1995 .

[47]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[48]  J. Gao,et al.  A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations. , 1992, Science.

[49]  M. Mezei Theoretical Calculation of the Liquid—Vapor Coexistence Curve of Water, Chloroform and Methanol with the Cavity-Biased Monte Carlo Method in the Gibbs Ensemble , 1992 .

[50]  R. Taylor,et al.  Molecular-dynamics simulations of the ethanol liquid–vapor interface , 2003 .

[51]  Richard D. Schaller,et al.  Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy , 2002 .

[52]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[53]  Koji Ando,et al.  Fluctuating Charge Study of Polarization Effects in Chlorinated Organic Liquids , 2001 .

[54]  W. L. Jorgensen,et al.  Pressure dependence of hydrogen bonding in liquid methanol , 1982 .

[55]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[56]  A. Richard,et al.  Ultracentrifugal studies of the isothermal compressibilities of organic alcohols and alkanes. Correlation with surface tension , 1976 .

[57]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[58]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[59]  Dadan Kusdiana,et al.  Biodiesel fuel from rapeseed oil as prepared in supercritical methanol , 2001 .

[60]  J. Alejandre,et al.  Force Field of Monoethanolamine , 2000 .

[61]  M. Matsumoto,et al.  Molecular orientation near liquid–vapor interface of methanol: Simulational study , 1989 .