Materials for stem cell factories of the future.

[1]  K. Shakesheff,et al.  Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation , 2014, Proceedings of the National Academy of Sciences.

[2]  Markus J Buehler,et al.  Materiomics: An ‐omics Approach to Biomaterials Research , 2013, Advanced materials.

[3]  Chris Armit,et al.  A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells , 2013, Nature Communications.

[4]  Divya Rajamohan,et al.  Current status of drug screening and disease modelling in human pluripotent stem cells , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  Jan de Boer,et al.  Materiomics : High-Throughput Screening of Biomaterial Properties , 2013 .

[6]  篠原 隆司,et al.  Induction of pluripotent stem cell cells from germ cells , 2012 .

[7]  K. Sekiguchi,et al.  Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells , 2012, Nature Communications.

[8]  K. Ye,et al.  A Synthetic, Xeno-Free Peptide Surface for Expansion and Directed Differentiation of Human Induced Pluripotent Stem Cells , 2012, PloS one.

[9]  Stephen A. Morin,et al.  Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. , 2012, ACS nano.

[10]  Ying Mei,et al.  Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. , 2012, Journal of materials chemistry.

[11]  D. G. T. Strange,et al.  Extracellular-matrix tethering regulates stem-cell fate. , 2012, Nature materials.

[12]  Shawn Martin,et al.  Lattice Enumeration for Inverse Molecular Design Using the Signature Descriptor , 2012, J. Chem. Inf. Model..

[13]  Ke Wu "Embryonic Stem Cell Lines Derived from Human Blastocytes" (1998), by James Thomson , 2012 .

[14]  S. Bennett,et al.  Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells , 2012, Cell adhesion & migration.

[15]  Thomas Stelzer,et al.  Innovative animal component-free surface for the cultivation of human embryonic stem cells , 2011, BMC proceedings.

[16]  Daniel G. Anderson,et al.  Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions , 2011, Proceedings of the National Academy of Sciences.

[17]  K. Healy,et al.  Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. , 2011, Biomaterials.

[18]  Jennifer M. Bolin,et al.  Chemically defined conditions for human iPS cell derivation and culture , 2011, Nature Methods.

[19]  P. Shaw,et al.  Neuronal Differentiation of C17.2 Neural Stem Cells Induced by a Natural Flavonoid, Baicalin , 2011, Chembiochem : a European journal of chemical biology.

[20]  Chih-Ming Ho,et al.  An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. , 2011, Nature communications.

[21]  D. Hwang,et al.  Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells , 2011 .

[22]  A. Feki,et al.  Xeno-free culture of human pluripotent stem cells. , 2011, Methods in molecular biology.

[23]  Trent P Munro,et al.  Stem cell integrins: implications for ex-vivo culture and cellular therapies. , 2011, Stem cell research.

[24]  Shu Chien,et al.  Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. , 2010, Biomaterials.

[25]  L. Kiessling,et al.  A defined glycosaminoglycan-binding substratum for human pluripotent stem cells , 2010, Nature Methods.

[26]  P. Andrews,et al.  Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. , 2010, Stem cell research.

[27]  Ravi A. Desai,et al.  Mechanical regulation of cell function with geometrically modulated elastomeric substrates , 2010, Nature Methods.

[28]  Gordana Vunjak-Novakovic,et al.  Geometric control of human stem cell morphology and differentiation. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[29]  E. Klein,et al.  Cost-Effectiveness of “Golden Mustard” for Treating Vitamin A Deficiency in India , 2010, PloS one.

[30]  Andrew J. Bonham,et al.  Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. , 2010, Stem cells and development.

[31]  Ying Mei,et al.  Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells , 2010, Nature materials.

[32]  T. Akaike,et al.  Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum , 2010, BMC Developmental Biology.

[33]  A. G. Fadeev,et al.  Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells , 2010, Nature Biotechnology.

[34]  K. Chien,et al.  Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511 , 2010, Nature Biotechnology.

[35]  J. Lahann,et al.  Synthetic polymer coatings for long-term growth of human embryonic stem cells , 2010, Nature Biotechnology.

[36]  Wanguo Wei,et al.  Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules , 2010, Proceedings of the National Academy of Sciences.

[37]  M. Pekkanen-Mattila,et al.  A Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells , 2010, PloS one.

[38]  D. Schaffer,et al.  Characterization of integrin engagement during defined human embryonic stem cell culture , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  Chris Denning,et al.  Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium , 2010, Biotechnology and bioengineering.

[40]  Robert Langer,et al.  High throughput methods applied in biomaterial development and discovery. , 2010, Biomaterials.

[41]  M. Rao,et al.  Xeno-Free Defined Conditions for Culture of Human Embryonic Stem Cells, Neural Stem Cells and Dopaminergic Neurons Derived from Them , 2009, PloS one.

[42]  David J. Williams,et al.  Automated, scalable culture of human embryonic stem cells in feeder‐free conditions , 2009, Biotechnology and bioengineering.

[43]  R. Damoiseaux,et al.  Integrated Chemical Genomics Reveals Modifiers of Survival in Human Embryonic Stem Cells , 2009, Stem cells.

[44]  Stephen Bartlett,et al.  Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. , 2009, Chemistry & biology.

[45]  H. Shu,et al.  Heat shock protein 90 is involved in regulation of hypoxia-driven proliferation of embryonic neural stem/progenitor cells , 2009, Cell Stress and Chaperones.

[46]  Austin G Smith,et al.  Capture of Authentic Embryonic Stem Cells from Rat Blastocysts , 2008, Cell.

[47]  K. Sekiguchi,et al.  Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. , 2008, Biochemical and biophysical research communications.

[48]  P. Andrews,et al.  Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium , 2008, Proceedings of the National Academy of Sciences.

[49]  N. Sato,et al.  The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells , 2008, PloS one.

[50]  J. Khillan,et al.  Promotion of Feeder‐Independent Self‐Renewal of Embryonic Stem Cells by Retinol (Vitamin A) , 2008, Stem cells.

[51]  Masashi Yamamoto,et al.  Indole Derivatives Sustain Embryonic Stem Cell Self-Renewal in Long-Term Culture , 2008, Bioscience, biotechnology, and biochemistry.

[52]  M. Alexander,et al.  TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface moieties that control wettability. , 2008, Analytical chemistry.

[53]  Angelique M. Nelson,et al.  Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB 2 receptor signaling , 2007 .

[54]  Simone Sieg,et al.  Combinatorial and High‐Throughput Materials Science , 2007 .

[55]  Robert Langer,et al.  High Throughput Surface Characterisation of a Combinatorial Material Library , 2007 .

[56]  S. Nishikawa,et al.  A ROCK inhibitor permits survival of dissociated human embryonic stem cells , 2007, Nature Biotechnology.

[57]  Ratmir Derda,et al.  Defined substrates for human embryonic stem cell growth identified from surface arrays. , 2007, ACS chemical biology.

[58]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[59]  Ying Liu,et al.  Assessing Self‐Renewal and Differentiation in Human Embryonic Stem Cell Lines , 2006, Stem cells.

[60]  J. Thomson,et al.  Derivation of human embryonic stem cells in defined conditions , 2006, Nature Biotechnology.

[61]  E. Brunette,et al.  Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. , 2005, Biotechnology and bioengineering.

[62]  Robert Langer,et al.  Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. , 2005, Biomaterials.

[63]  S. Fisher,et al.  Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. , 2005, Fertility and sterility.

[64]  F. Gage,et al.  Human embryonic stem cells express an immunogenic nonhuman sialic acid , 2005, Nature Medicine.

[65]  Joachim Kohn,et al.  New approaches to biomaterials design , 2004, Nature materials.

[66]  Chad A. Cowan,et al.  The Src Family of Tyrosine Kinases Is Important for Embryonic Stem Cell Self-renewal* , 2004, Journal of Biological Chemistry.

[67]  Daniel G. Anderson,et al.  Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells , 2004, Nature Biotechnology.

[68]  Jing Wang,et al.  BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Itskovitz‐Eldor,et al.  Feeder Layer- and Serum-Free Culture of Human Embryonic Stem Cells1 , 2004, Biology of reproduction.

[70]  J. Kohn,et al.  Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique. , 2004, Journal of biomedical materials research. Part A.

[71]  P. Greengard,et al.  Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor , 2004, Nature Medicine.

[72]  D. Grainger,et al.  Correlating fibronectin adsorption with endothelial cell adhesion and signaling on polymer substrates. , 2003, Journal of biomedical materials research. Part A.

[73]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[74]  S Brocchini,et al.  Structure-property correlations in a combinatorial library of degradable biomaterials. , 1998, Journal of biomedical materials research.

[75]  S. Brocchini,et al.  A Combinatorial Approach for Polymer Design , 1997 .

[76]  A. Chilkoti,et al.  Relationship between Surface Chemistry and Endothelial Cell Growth: Partial Least-Squares Regression of the Static Secondary Ion Mass Spectra of Oxygen-Containing Plasma-Deposited Films , 1995 .

[77]  Donald E. Ingber,et al.  The riddle of morphogenesis: A question of solution chemistry or molecular cell engineering? , 1993, Cell.

[78]  L. Liotta,et al.  Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. , 1982, Biochemistry.

[79]  Justin Schwartz Engineering , 1929, Nature.