Numerical simulation of 3D viscoelastic flows with free surfaces

A numerical model is presented for the simulation of viscoelastic flows with complex free surfaces in three space dimensions. The mathematical formulation of the model is similar to that of the volume of fluid (VOF) method, but the numerical procedures are different.A splitting method is used for the time discretization. The prediction step consists in solving three advection problems, one for the volume fraction of liquid (which allows the new liquid domain to be obtained), one for the velocity field, one for the extra-stress. The correction step corresponds to solving an Oldroyd-B fluid flow problem without advection in the new liquid domain.Two different grids are used for the space discretization. The three advection problems are solved on a fixed, structured grid made out of small cubic cells, using a forward characteristics method. The Oldroyd-B problem without advection is solved using continuous, piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons.Efficient post-processing algorithms enhance the quality of the numerical solution. A hierarchical data structure reduces the memory requirements.Convergence of the numerical method is checked for the pure extensional flow and the filling of a tube. Numerical results are presented for the stretching of a filament. Fingering instabilities are obtained when the aspect ratio is large. Also, results pertaining to jet buckling are reported.

[1]  A. Caboussat Archives of Computational Methods in Engineering Numerical Simulation of Two-phase Free Surface Flows , 2022 .

[2]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[3]  M. Picasso,et al.  Calculation of variable-topology free surface flows using CONNFFESSIT , 2003 .

[4]  J. Rappaz,et al.  Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas , 2005 .

[5]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[6]  Jie Li,et al.  Shear-induced rupturing of a viscous drop in a Bingham liquid , 2000 .

[7]  T. Phillips,et al.  Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .

[8]  M. F. Tomé,et al.  A finite difference technique for simulating unsteady viscoelastic free surface flows , 2002 .

[9]  Michael Renardy Existence of slow steady flows of viscoelastic fluids of integral type , 1988 .

[10]  T. Coupez,et al.  Finite element solution of the 3D mold filling problem for viscous incompressible fluid , 1998 .

[11]  M. Shelley,et al.  Hele - Shaw flow and pattern formation in a time-dependent gap , 1997 .

[12]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[13]  A. Chorin Flame Advection and Propagation Algorithms , 1989 .

[14]  A. A. F. Ven,et al.  Flow patterns behind the free flow front for a Newtonian fluid injected between two infinite parallel plates , 2004 .

[15]  Vincent Maronnier Simulation numérique d'écoulements de fluides incompressibles avec surface libre , 2000 .

[16]  G. McKinley,et al.  Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow , 1996 .

[17]  G. McKinley,et al.  FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS , 2002 .

[18]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[19]  Vincent Legat,et al.  Finite element simulation of a filament stretching extensional rheometer , 1997 .

[20]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[21]  Erik G. Thompson,et al.  Use of pseudo‐concentrations to follow creeping viscous flows during transient analysis , 1986 .

[22]  Anke Lindner,et al.  Cohesive failure of thin layers of soft model adhesives under tension , 2003 .

[23]  Cornelis Vuik,et al.  A mass conserving level set (MCLS) method for modeling of multi-phase flows , 2003 .

[24]  O. Hassager,et al.  Growth of non-axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation , 2002 .

[25]  B. Debbaut,et al.  Calculation of free surface flows using CONNFFESSIT , 2001 .

[26]  J. Rappaz,et al.  Numerical simulation of three‐dimensional free surface flows , 2003 .

[27]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[28]  G. McKinley,et al.  Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices , 1998 .

[29]  J. Rappaz,et al.  Regular Article: Numerical Simulation of Free Surface Flows , 1999 .

[30]  L. Fuchs,et al.  High-order surface tension VOF-model for 3D bubble flows with high density ratio , 2004 .

[31]  O. Hassager,et al.  Three-dimensional simulations of viscoelastic instability in polymeric filaments , 1999 .

[32]  O. Pironneau,et al.  Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains , 1992 .

[33]  Jacques Rappaz,et al.  Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows , 2001 .

[34]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[35]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[36]  M. F. Tomé,et al.  Numerical simulation of viscous flow: Buckling of planar jets , 1999 .

[37]  R. Stenberg,et al.  GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows , 2001 .

[38]  R. Scardovelli,et al.  A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows , 2003 .

[39]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[40]  Stanley Osher,et al.  Level Set Methods , 2003 .

[41]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[42]  P. Wesseling,et al.  A mass‐conserving Level‐Set method for modelling of multi‐phase flows , 2005 .

[43]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[44]  O. Pironneau Finite Element Methods for Fluids , 1990 .