Life cycle assessment of jointly produced solar energy materials: Challenges and best practices

[1]  E. M. Harper,et al.  Criticality of Seven Specialty Metals , 2016 .

[2]  Vinod Kumar,et al.  Photon downshifting in strong NIR emitting Er3+–Yb3+ embedded tungsten tellurite glass , 2016 .

[3]  Jiayuan Wang,et al.  Rethinking China's strategic mineral policy on indium: implication for the flat screens and photovoltaic industries , 2016 .

[4]  F. Gourbilleau,et al.  SiNx:Tb3+–Yb3+, an efficient down-conversion layer compatible with a silicon solar cell process , 2015, 1511.04710.

[5]  F. Lahoz,et al.  Analysis of the upconversion process in Tm3+ doped glasses for enhancement of the photocurrent in silicon solar cells , 2016 .

[6]  Vasilis Fthenakis,et al.  Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity 3rd Edition , 2016 .

[7]  N. T. Nassar,et al.  Criticality of the Rare Earth Elements , 2015 .

[8]  E. M. Harper,et al.  Criticality of the Geological Zinc, Tin, and Lead Family , 2015 .

[9]  D. Brooks Supply and Competition in Minor Metals , 2015 .

[10]  N. T. Nassar,et al.  By-product metals are technologically essential but have problematic supply , 2015, Science Advances.

[11]  N. T. Nassar,et al.  Criticality of metals and metalloids , 2015, Proceedings of the National Academy of Sciences.

[12]  Hongwei Song,et al.  Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance. , 2015, Journal of colloid and interface science.

[13]  E. M. Harper,et al.  The criticality of four nuclear energy metals , 2015 .

[14]  George G. Zaimes,et al.  Environmental Life Cycle Perspective on Rare Earth Oxide Production , 2015 .

[15]  Philip Nuss,et al.  Employing Considerations of Criticality in Product Design , 2014 .

[16]  Vikas Khanna,et al.  The role of allocation and coproducts in environmental evaluation of microalgal biofuels: How important? , 2014 .

[17]  M. Eckelman,et al.  Life Cycle Assessment of Metals: A Scientific Synthesis , 2014, PloS one.

[18]  Gabrielle Gaustad,et al.  Identifying critical materials for photovoltaics in the US: A multi-metric approach , 2014 .

[19]  Michele L. Bustamante,et al.  Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics , 2014 .

[20]  Vasilis Fthenakis,et al.  Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems , 2014 .

[21]  Gabrielle Gaustad,et al.  Strengthening the case for recycling photovoltaics: An energy payback analysis , 2014 .

[22]  N. T. Nassar,et al.  Criticality of iron and its principal alloying elements. , 2014, Environmental science & technology.

[23]  S. G. Kumar,et al.  Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects , 2014 .

[24]  Vasilis Fthenakis,et al.  Direct Te Mining: Resource Availability and Impact on Cumulative Energy Demand of CdTe PV Life Cycles , 2013, IEEE Journal of Photovoltaics.

[25]  Anna Stamp,et al.  Limitations of applying life cycle assessment to complex co-product systems: The case of an integrated precious metals smelter-refinery , 2013 .

[26]  Hongxing Yang,et al.  Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems , 2013 .

[27]  Mark Winskel,et al.  Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity , 2012 .

[28]  R. Heijungs,et al.  Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies , 2012, The International Journal of Life Cycle Assessment.

[29]  Marianne Bigum,et al.  Metal recovery from high-grade WEEE: a life cycle assessment. , 2012, Journal of hazardous materials.

[30]  Simon Warren,et al.  Methodology of metal criticality determination. , 2012, Environmental science & technology.

[31]  T. E. Graedel,et al.  Criticality of the geological copper family. , 2012, Environmental science & technology.

[32]  R. Gross,et al.  Materials availability for thin film (TF) PV technologies development: A real concern? , 2011 .

[33]  T. Graedel,et al.  Criticality of non-fuel minerals: a review of major approaches and analyses. , 2011, Environmental science & technology.

[34]  Robert Ilg,et al.  Update of environmental indicators and energy payback time of CdTe PV systems in Europe , 2011 .

[35]  U. Rodríguez-Mendoza,et al.  Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells , 2011 .

[36]  M. Tangstad,et al.  Silicon processing: from quartz to crystalline silicon solar cells , 2011 .

[37]  B. Weidema,et al.  Avoiding Allocation in Life Cycle Assessment Revisited , 2010 .

[38]  Teresa M. Mata,et al.  Comparison of allocation approaches in soybean biodiesel life cycle assessment , 2010 .

[39]  M. Huijbregts,et al.  Cumulative energy demand as predictor for the environmental burden of commodity production. , 2010, Environmental science & technology.

[40]  Maria Laura Parisi,et al.  Life Cycle Assessment of advanced technologies for photovoltaic panels production , 2010 .

[41]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[42]  Vasilis Fthenakis,et al.  Update of PV Energy Payback Times and Life-Cycle Greenhouse Gas Emissions , 2009 .

[43]  Michael D. Kempe,et al.  Effects of cerium removal from glass on photovoltaic module performance and stability , 2009, Optics + Photonics for Sustainable Energy.

[44]  Gjalt Huppes,et al.  Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol , 2009 .

[45]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[46]  A. V. Naumov,et al.  Review of the world market of rare-earth metals , 2008, Russian Journal of Non-Ferrous Metals.

[47]  David J. Wilson,et al.  Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle , 2008 .

[48]  Randolph Kirchain,et al.  Material availability and the supply chain: risks, effects, and responses. , 2007, Environmental science & technology.

[49]  Nathan Pelletier,et al.  Co-product allocation in life cycle assessments of seafood production systems: Review of problems and strategies , 2007 .

[50]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[51]  Reginald B. H. Tan,et al.  The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044 , 2006 .

[52]  Vasilis Fthenakis,et al.  Emissions and encapsulation of cadmium in CdTe PV modules during fires , 2005 .

[53]  Vasilis Fthenakis,et al.  Life cycle impact analysis of cadmium in CdTe PV production , 2004 .

[54]  Jeroen B. Guinee,et al.  Handbook on life cycle assessment operational guide to the ISO standards , 2002 .

[55]  Göran Finnveden,et al.  Allocation in ISO 14041—a critical review , 2001 .

[56]  Bo Pedersen Weidema,et al.  Avoiding Co‐Product Allocation in Life‐Cycle Assessment , 2000 .

[57]  Forest L. Reinhardt,et al.  Down to Earth: Applying Business Principles to Environmental Management , 2000 .

[58]  Björn A. Andersson Materials availability for large-scale thin-film photovoltaics , 2000 .

[59]  Vasilis Fthenakis,et al.  Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide , 1999 .

[60]  Erik Alsema,et al.  Energy requirements of thin-film solar cell modules—a review , 1998 .

[61]  C. Azar,et al.  Material constraints for thin-film solar cells , 1998 .

[62]  L. Teppo,et al.  Health effects of cadmium exposure - a review of the literature and a risk estimate , 1998 .

[63]  Gary A. Campbell The role of co-products in stabilizing the metal mining industry , 1985 .

[64]  Gunnar F. Nordberg,et al.  Handbook on the Toxicology of Metals , 1979 .