A Molecularly Defined Duplication Set for the X Chromosome of Drosophila melanogaster

We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

[1]  T. Kaufman,et al.  A New Resource for Characterizing X-Linked Genes in Drosophila melanogaster: Systematic Coverage and Subdivision of the X Chromosome With Nested, Y-Linked Duplications , 2010, Genetics.

[2]  Emily H Turner,et al.  Target-enrichment strategies for next-generation sequencing , 2010, Nature Methods.

[3]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[4]  N. Perrimon,et al.  Cross-Species RNAi Rescue Platform in Drosophila melanogaster , 2009, Genetics.

[5]  T. Schüpbach,et al.  The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. , 2009, Developmental cell.

[6]  Pavel Tomancak,et al.  A toolkit for high-throughput, cross-species gene engineering in Drosophila , 2009, Nature Methods.

[7]  K. White,et al.  Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster , 2009, Nature Methods.

[8]  M. Kuroda,et al.  Drosophila dosage compensation: a complex voyage to the X chromosome , 2009, Development.

[9]  T. Jensen,et al.  PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts , 2009, BMC biotechnology.

[10]  D. Court,et al.  Recombineering: a homologous recombination-based method of genetic engineering , 2009, Nature Protocols.

[11]  Peter J. Park,et al.  A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X Chromosome , 2008, Cell.

[12]  Bassem A. Hassan,et al.  Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation , 2008, Nucleic acids research.

[13]  Karl Mechtler,et al.  BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals , 2008, Nature Methods.

[14]  B. Dickson,et al.  High-resolution, high-throughput SNP mapping in Drosophila melanogaster , 2008, Nature Methods.

[15]  N. Perrimon,et al.  Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes , 2008, Nature Genetics.

[16]  Vladimir Larionov,et al.  Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae , 2008, Nature Protocols.

[17]  R. Drysdale FlyBase : a database for the Drosophila research community. , 2008, Methods in molecular biology.

[18]  H. Bellen,et al.  Transgenesis upgrades for Drosophila melanogaster , 2007, Development.

[19]  Michael Ashburner,et al.  The ribosomal protein genes and Minute loci of Drosophila melanogaster , 2007, Genome Biology.

[20]  Michael Ashburner,et al.  The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource , 2007, Genetics.

[21]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[22]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[23]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[24]  M. Kay,et al.  Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. , 2006, Human gene therapy.

[25]  N. Kouprina,et al.  TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution , 2006, Nature Reviews Genetics.

[26]  T. Jensen,et al.  390. Phage c31 Integrase Induces Chromosomal Aberrations in Primary Human Fibroblasts , 2006 .

[27]  T. Jensen,et al.  φc31 integrase induces chromosomal aberrations in primary human fibroblasts , 2006, Gene Therapy.

[28]  H. Bellen,et al.  Emerging technologies for gene manipulation in Drosophila melanogaster , 2005, Nature Reviews Genetics.

[29]  L. G. Tilney,et al.  Microvilli appear to represent the first step in actin bundle formation in Drosophila bristles , 2004, Journal of Cell Science.

[30]  M. Ashburner,et al.  The DrosDel Collection , 2004, Genetics.

[31]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[32]  D. Curtis,et al.  Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome , 2004, Nature Genetics.

[33]  P. Hiesinger,et al.  Mapping Drosophila mutations with molecularly defined P element insertions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Michael Ashburner,et al.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review , 2002, Genome Biology.

[35]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[36]  W. Szybalski,et al.  Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. , 2002, Genome research.

[37]  K. Nairz,et al.  High-resolution SNP mapping by denaturing HPLC , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. Barrell,et al.  Mapping and identification of essential gene functions on the X chromosome of Drosophila , 2002, EMBO reports.

[39]  B. Dickson,et al.  Genetic mapping with SNP markers in Drosophila , 2001, Nature Genetics.

[40]  Sophie G. Martin,et al.  A rapid method to map mutations in Drosophila , 2001, Genome Biology.

[41]  M. C. Ellis,et al.  Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. , 2001, Genome research.

[42]  B. Barrell,et al.  From first base: the sequence of the tip of the X chromosome of Drosophila melanogaster, a comparison of two sequencing strategies. , 2001, Genome research.

[43]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[44]  G M Rubin,et al.  A BAC-based physical map of the major autosomes of Drosophila melanogaster. , 2000, Science.

[45]  V. Beneš,et al.  BAC trimming: minimizing clone overlaps. , 2000, Genomics.

[46]  L. G. Tilney,et al.  Why Are Two Different Cross-linkers Necessary for Actin Bundle Formation In Vivo and What Does Each Cross-link Contribute? , 1998, The Journal of cell biology.

[47]  J. Royet,et al.  Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. , 1995, Development.

[48]  Y. Delotto,et al.  Structure and regulation of a complex locus: the cut gene of Drosophila. , 1995, Genetics.

[49]  V. Corces,et al.  forked proteins are components of fiber bundles present in developing bristles of Drosophila melanogaster. , 1994, Genetics.

[50]  M. W. Young,et al.  Further evidence for function of the Drosophila Notch protein as a transmembrane receptor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K. Saigo,et al.  Mechanism of induction of Bar-like eye malformation by transient overexpression of Bar homeobox genes in Drosophila melanogaster. , 1993, Genetica.

[52]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[53]  S. Higashijima,et al.  Identification of a different-type homeobox gene, BarH1, possibly causing Bar (B) and Om(1D) mutations in Drosophila. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. Engels,et al.  High-frequency P element loss in Drosophila is homolog dependent , 1990, Cell.

[55]  J. Modolell,et al.  A unitary basis for different Hairy‐wing mutations of Drosophila melanogaster. , 1988, The EMBO journal.

[56]  N. Perrimon,et al.  Genetic evidence that the sans fille locus is involved in Drosophila sex determination. , 1988, Genetics.

[57]  T. Cline Evidence that sisterless-a and sisterless-b are two of several discrete "numerator elements" of the X/A sex determination signal in Drosophila that switch Sxl between two alternative stable expression states. , 1988, Genetics.

[58]  C. Emerson,et al.  Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. , 1988, Genetics.

[59]  J. Merriam,et al.  Regulation of gene activity by dosage compensation at the chromosomal level in drosophila. , 1975, Genetics.

[60]  J. Laughnan,et al.  Recombination at the bar locus in an inverted attached-X system in Drosophila melanogaster. , 1973, Genetics.

[61]  B. S. Baker,et al.  Segmental aneuploidy and the genetic gross structure of the Drosophila genome. , 1972, Genetics.

[62]  A. Sturtevant,et al.  REVERSE MUTATION OF THE BAR GENE CORRELATED WITH CROSSING OVER. , 1923, Science.