On the numerical evaluation of one-loop amplitudes: the gluonic case
暂无分享,去创建一个
[1] P. Mastrolia,et al. Closed-form decomposition of one-loop massive amplitudes , 2008, 0803.1989.
[2] Glover,et al. Higher-order corrections to jet cross sections in e+e- annihilation. , 1992, Physical review. D, Particles and fields.
[3] P. D. Causmaecker,et al. Multiple bremsstrahlung in gauge theories at high energies (II). Single bremsstrahlung , 1982 .
[5] D. Forde. Direct extraction of one-loop integral coefficients , 2007, 0704.1835.
[6] G. Soff,et al. AMEGIC++ 1.0: A Matrix element generator in C++ , 2001, hep-ph/0109036.
[7] G. Zanderighi,et al. Scalar one-loop integrals for QCD , 2007, 0712.1851.
[8] G. Zanderighi,et al. The one-loop amplitude for six-gluon scattering , 2006, hep-ph/0602185.
[9] L. Dixon,et al. Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.
[10] A. Denner,et al. Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.
[11] T. Binoth,et al. NLO QCD corrections to tri-boson production , 2008 .
[12] S. Weinzierl,et al. One-Loop Amplitudes for e^+ e^- to q-bar q Q-bar Q , 1996, hep-ph/9610370.
[13] W. Giele,et al. Recursive calculations for processes with n gluons , 1988 .
[14] Z. Kunszt,et al. Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes , 2006, hep-ph/0612277.
[15] L. Dixon,et al. SERVICE DE PHYSIQUE THEORIQUE , 2004 .
[16] P. Mastrolia,et al. The six-photon amplitude , 2008, 0804.1315.
[17] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[18] Bo Feng,et al. Integral coefficients for one-loop amplitudes , 2007, 0711.4284.
[19] J. Fujimoto,et al. GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks , 2003, hep-ph/0308080.
[20] A. Denner,et al. Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.
[21] R. Kleiss,et al. Multigluon cross sections and 5-jet production at hadron colliders , 1989 .
[22] R. Pittau,et al. On the rational terms of the one-loop amplitudes , 2008, 0802.1876.
[23] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[24] L. Dixon,et al. One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.
[25] Aggeliki Kanaki,et al. HELAC: A package to compute electroweak helicity amplitudes , 2000, hep-ph/0002082.
[26] L. Dixon,et al. PROGRESS IN ONE-LOOP QCD COMPUTATIONS , 1996, hep-ph/9602280.
[27] S. D. Ellis,et al. A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies , 1986 .
[28] Ericka Stricklin-Parker,et al. Ann , 2005 .
[29] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[30] M. Moretti,et al. An algorithm to compute Born scattering amplitudes without Feynman graphs , 1995, hep-ph/9507237.
[31] M. Mangano,et al. Duality and Multi - Gluon Scattering , 1988 .
[32] Costas G. Papadopoulos,et al. CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.
[33] E. Witten,et al. Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical Review Letters.
[34] R. Kleiss,et al. On the computation of multigluon amplitudes , 1998 .
[35] R. Kleiss,et al. Spinor techniques for calculating pp → W±/Z0 + jets , 1985 .
[36] Giovanni Ossola,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[37] Mikhail Dubinin,et al. CompHEP - a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User's manual for version 33 , 1999 .
[38] T. Stelzer,et al. Automatic generation of tree level helicity amplitudes , 1994, hep-ph/9401258.
[39] F. Campanario,et al. Gluon-fusion contributions to H+2 jet production , 2001, hep-ph/0108030.
[40] R. Pittau,et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.
[41] M. Roth,et al. Complete electroweak O(α) corrections to charged-current e⁺e⁻ → 4 fermion processes , 2005 .
[42] W. Giele,et al. The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus , 1987 .
[43] P. D. Causmaecker,et al. Multiple bremsstrahlung in gauge theories at high energies (I). General formalism for quantum electrodynamics , 1982 .
[44] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .
[45] Supersymmetric regularization, two-loop QCD amplitudes, and coupling shifts , 2002, hep-ph/0202271.
[46] J. Vermaseren,et al. New algorithms for one-loop integrals , 1990 .
[47] Xiaoye S. Li,et al. ARPREC: An arbitrary precision computation package , 2002 .
[48] F. Cachazo,et al. Computing one-loop amplitudes from the holomorphic anomaly of unitarity cuts , 2004, hep-th/0410179.
[49] A. Sherstnev,et al. CompHEP 4.4 - Automatic Computations from Lagrangians to Events , 2004, hep-ph/0403113.
[50] Z. Bern,et al. The Computation of loop amplitudes in gauge theories , 1992 .
[51] R. Pittau,et al. Numerical evaluation of six-photon amplitudes , 2007, 0704.1271.
[52] L. Dixon,et al. The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.
[53] J. Gunion,et al. Improved analytic techniques for tree graph calculations and the ggqqℓℓ subprocess , 1985 .
[54] S. Catani. The singular behaviour of QCD amplitudes at two-loop order , 1998, hep-ph/9802439.
[55] Z. Bern,et al. Color decomposition of one-loop amplitudes in gauge theories , 1991 .
[56] R. Pittau,et al. The NLO multileg working group: summary report , 2008, 0803.0494.