On the numerical evaluation of one-loop amplitudes: the gluonic case

We develop an algorithm of polynomial complexity for evaluating one-loop amplitudes with an arbitrary number of external particles. The algorithm is implemented in the Rocket program. Starting from particle vertices given by Feynman rules, tree amplitudes are constructed using recursive relations. The tree amplitudes are then used to build one-loop amplitudes using an integer dimension on-shell cut method. As a first application we considered only three and four gluon vertices calculating the pure gluonic one-loop amplitudes for arbitrary external helicity or polarization states. We compare our numerical results to analytical results in the literature, analyze the time behavior of the algorithm and the accuracy of the results, and give explicit results for fixed phase space points for up to twenty external gluons.

[1]  P. Mastrolia,et al.  Closed-form decomposition of one-loop massive amplitudes , 2008, 0803.1989.

[2]  Glover,et al.  Higher-order corrections to jet cross sections in e+e- annihilation. , 1992, Physical review. D, Particles and fields.

[3]  P. D. Causmaecker,et al.  Multiple bremsstrahlung in gauge theories at high energies (II). Single bremsstrahlung , 1982 .

[5]  D. Forde Direct extraction of one-loop integral coefficients , 2007, 0704.1835.

[6]  G. Soff,et al.  AMEGIC++ 1.0: A Matrix element generator in C++ , 2001, hep-ph/0109036.

[7]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[8]  G. Zanderighi,et al.  The one-loop amplitude for six-gluon scattering , 2006, hep-ph/0602185.

[9]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[10]  A. Denner,et al.  Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.

[11]  T. Binoth,et al.  NLO QCD corrections to tri-boson production , 2008 .

[12]  S. Weinzierl,et al.  One-Loop Amplitudes for e^+ e^- to q-bar q Q-bar Q , 1996, hep-ph/9610370.

[13]  W. Giele,et al.  Recursive calculations for processes with n gluons , 1988 .

[14]  Z. Kunszt,et al.  Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes , 2006, hep-ph/0612277.

[15]  L. Dixon,et al.  SERVICE DE PHYSIQUE THEORIQUE , 2004 .

[16]  P. Mastrolia,et al.  The six-photon amplitude , 2008, 0804.1315.

[17]  Z. Kunszt,et al.  Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.

[18]  Bo Feng,et al.  Integral coefficients for one-loop amplitudes , 2007, 0711.4284.

[19]  J. Fujimoto,et al.  GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks , 2003, hep-ph/0308080.

[20]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[21]  R. Kleiss,et al.  Multigluon cross sections and 5-jet production at hadron colliders , 1989 .

[22]  R. Pittau,et al.  On the rational terms of the one-loop amplitudes , 2008, 0802.1876.

[23]  Z. Kunszt,et al.  A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.

[24]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[25]  Aggeliki Kanaki,et al.  HELAC: A package to compute electroweak helicity amplitudes , 2000, hep-ph/0002082.

[26]  L. Dixon,et al.  PROGRESS IN ONE-LOOP QCD COMPUTATIONS , 1996, hep-ph/9602280.

[27]  S. D. Ellis,et al.  A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies , 1986 .

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  D. Maitre,et al.  An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.

[30]  M. Moretti,et al.  An algorithm to compute Born scattering amplitudes without Feynman graphs , 1995, hep-ph/9507237.

[31]  M. Mangano,et al.  Duality and Multi - Gluon Scattering , 1988 .

[32]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[33]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical Review Letters.

[34]  R. Kleiss,et al.  On the computation of multigluon amplitudes , 1998 .

[35]  R. Kleiss,et al.  Spinor techniques for calculating pp → W±/Z0 + jets , 1985 .

[36]  Giovanni Ossola,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[37]  Mikhail Dubinin,et al.  CompHEP - a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User's manual for version 33 , 1999 .

[38]  T. Stelzer,et al.  Automatic generation of tree level helicity amplitudes , 1994, hep-ph/9401258.

[39]  F. Campanario,et al.  Gluon-fusion contributions to H+2 jet production , 2001, hep-ph/0108030.

[40]  R. Pittau,et al.  ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.

[41]  M. Roth,et al.  Complete electroweak O(α) corrections to charged-current e⁺e⁻ → 4 fermion processes , 2005 .

[42]  W. Giele,et al.  The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus , 1987 .

[43]  P. D. Causmaecker,et al.  Multiple bremsstrahlung in gauge theories at high energies (I). General formalism for quantum electrodynamics , 1982 .

[44]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[45]  Supersymmetric regularization, two-loop QCD amplitudes, and coupling shifts , 2002, hep-ph/0202271.

[46]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[47]  Xiaoye S. Li,et al.  ARPREC: An arbitrary precision computation package , 2002 .

[48]  F. Cachazo,et al.  Computing one-loop amplitudes from the holomorphic anomaly of unitarity cuts , 2004, hep-th/0410179.

[49]  A. Sherstnev,et al.  CompHEP 4.4 - Automatic Computations from Lagrangians to Events , 2004, hep-ph/0403113.

[50]  Z. Bern,et al.  The Computation of loop amplitudes in gauge theories , 1992 .

[51]  R. Pittau,et al.  Numerical evaluation of six-photon amplitudes , 2007, 0704.1271.

[52]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[53]  J. Gunion,et al.  Improved analytic techniques for tree graph calculations and the ggqqℓℓ subprocess , 1985 .

[54]  S. Catani The singular behaviour of QCD amplitudes at two-loop order , 1998, hep-ph/9802439.

[55]  Z. Bern,et al.  Color decomposition of one-loop amplitudes in gauge theories , 1991 .

[56]  R. Pittau,et al.  The NLO multileg working group: summary report , 2008, 0803.0494.