Method to Improve Airborne Pollution Forecasting by Using Ant Colony Optimization and Neuro-Fuzzy Algorithms

This contribution shows the feasibility of improving the modeling of the non-linear behavior of airborne pollution in large cities. In previous works, models have been constructed using many machine learning algorithms. However, many of them do not work for all the pollutants, or are not consistent or robust for all cities. In this paper, an improved algorithm is proposed using Ant Colony Optimization (ACO) employing models created by a neuro-fuzzy system. This method results in a reduction of prediction error, which results in a more reliable prediction models obtained.

[1]  Cortina Januchs,et al.  Aplicación de técnicas de inteligencia artificial a la predicción de contaminantes atmosféricos , 2012 .

[2]  李幼升,et al.  Ph , 1989 .

[3]  Arnab Kole,et al.  An Ant Colony Optimization Algorithm for Uncapacitated Facility Location Problem , 2014 .

[4]  Brigitte Charnomordic,et al.  Fuzzy inference systems: An integrated modeling environment for collaboration between expert knowledge and data using FisPro , 2012, Expert Syst. Appl..

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Mario A. Muñoz,et al.  Inteligencia de enjambres: sociedades para la solución de problemas (una revisión) Swarm intelligence: problem-solving societies (a review) , 2008 .

[7]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[8]  J.-S.R. Jang Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Noise Cancellation , 1995 .

[9]  Nadia Nedjah,et al.  Fuzzy Systems Engineering: Theory and Practice , 2005 .

[10]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[11]  Jesús Carlos Pedraza Ortega,et al.  Performance assessment of fuzzy clustering models applied to urban airborne pollution , 2011, CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers.

[12]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[13]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[14]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[15]  Carlos Alfredo,et al.  Implementación en hidroinformática de un método de optimización matemática basado en la colonia de hormigas , 2014 .

[16]  Artemio Sotomayor-Olmedo,et al.  Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach , 2013 .

[17]  Ramos-Arreguin Juan Manuel,et al.  Advances in Airborne Pollution Forecasting Using Soft Computing Techniques , 2011 .

[18]  S. Abbasian-Naghneh,et al.  An intelligent load forecasting expert system by integration of ant colony optimization, genetic algorithms and fuzzy logic , 2011, 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).