BehavePlus fire modeling system, version 5.0: Variables

This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a host of fire management applications including projecting the behavior of an ongoing fire, planning prescribed fire, fuel hazard assessment, and training. The BehavePlus program automatically creates a worksheet that requests the required input variables based on the modules, output variables, and options selected by the user. This is a reference paper that describes the 189 variables in BehavePlus, with information on input and output relationships. A User's Guide describes operation of the program and can be accessed at http://www.fs.fed.us/rm/pubs/rmrs_gtr106.html

[1]  James K. Brown Handbook for inventorying downed woody material , 1974 .

[2]  Range Experiment Station,et al.  Predicting slash depth for fire modeling , 1978 .

[3]  James K. Brown,et al.  Appraising fuels and flammability in western aspen: a prescribed fire guide , 1986 .

[4]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[5]  H. Anderson,et al.  Heat transfer and fire spread , 1969 .

[6]  B. Lawson,et al.  Weather in the Canadian forest fire danger rating system. A user guide to national standards and practices. , 1978 .

[7]  Francis Fujioka Estimating Wildland Fire Rate of Spread in a Spatially Nonuniform Environment , 1985 .

[8]  C. E. Van Wagner,et al.  Height of Crown Scorch in Forest Fires , 1973 .

[9]  D. J. Latham,et al.  Ignition probabilities of wildland and fuels based on simulated lightning discharges , 1989 .

[10]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[11]  Robert C. Seli,et al.  BehavePlus fire modeling system, version 4.0: User's Guide , 2005 .

[12]  James K. Brown,et al.  Fire damage, mortality, and suckering in aspen , 1987 .

[13]  Patricia L. Andrews,et al.  BehavePlus fire modeling system: Past, present, and future , 2007 .

[14]  P. H. Thomas,et al.  THE SIZE OF FLAMES FROM NATURAL FIRES , 1962 .

[15]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .

[16]  F. Albini,et al.  Predicting fire behavior in palmetto-gallberry fuel complexes , 1978 .

[17]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[18]  R. Burgan,et al.  BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .

[19]  Robin J. Tausch,et al.  Rocky Mountain Research Station , 1998 .

[20]  Mark A. Finney,et al.  Calculation of fire spread rates across random landscapes , 2003 .

[21]  K. Ryan,et al.  Predicting postfire mortality of seven western conifers , 1988 .

[22]  Nicholas L. Crookston,et al.  An overview of the fire and fuels extension to the forest vegetation simulator , 2000 .

[23]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[24]  H. Anderson,et al.  Predicting wind-driven wild land fire size and shape / , 1983 .

[25]  P. Andrews BEHAVE : Fire Behavior Prediction and Fuel Modeling System - BURN Subsystem, Part 1 , 1986 .

[26]  Jeremy S. Fried,et al.  Simulating wildfire containment with realistic tactics , 1996 .

[27]  C. E. Van Wagner,et al.  Prediction of crown fire behavior in two stands of jack pine , 1993 .