Efficient implementation of effective core potential integrals and gradients on graphical processing units.

Effective core potential integral and gradient evaluations are accelerated via implementation on graphical processing units (GPUs). Two simple formulas are proposed to estimate the upper bounds of the integrals, and these are used for screening. A sorting strategy is designed to balance the workload between GPU threads properly. Significant improvements in performance and reduced scaling with system size are observed when combining the screening and sorting methods, and the calculations are highly efficient for systems containing up to 10 000 basis functions. The GPU implementation preserves the precision of the calculation; the ground state Hartree-Fock energy achieves good accuracy for CdSe and ZnTe nanocrystals, and energy is well conserved in ab initio molecular dynamics simulations.

[1]  Federico Moscardó,et al.  A simple, reliable and efficient scheme for automatic numerical integration , 1992 .

[2]  Todd J. Martínez,et al.  Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics , 2011 .

[3]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[4]  P. A. Christiansen,et al.  IMPROVED Ab Initio EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS , 1979 .

[5]  Todd J Martínez,et al.  Multicentered valence electron effective potentials: a solution to the link atom problem for ground and excited electronic states. , 2006, The Journal of chemical physics.

[6]  Edmanuel Torres,et al.  A (Nearly) Universally Applicable Method for Modeling Noncovalent Interactions Using B3LYP. , 2012, The journal of physical chemistry letters.

[7]  Walter Thiel,et al.  Analytical Second Derivatives for Effective Core Potentials , 1988 .

[8]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[9]  W. Goddard New Foundation for the Use of Pseudopotentials in Metals , 1968 .

[10]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[11]  Mitás Quantum Monte Carlo calculation of the Fe atom. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[12]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. , 2009, Journal of chemical theory and computation.

[13]  R. Car,et al.  Electronic and structural properties of sodium clusters. , 1985, Physical review. B, Condensed matter.

[14]  G. Simons,et al.  Atomic and Molecular Pseudopotential Studies Using Gaussian Orbitals , 1970 .

[15]  S. Rice,et al.  Use of Pseudopotentials in Atomic‐Structure Calculations , 1968 .

[16]  William A. Goddard,et al.  Ab Initio Effective Potentials for Use in Molecular Calculations , 1972 .

[17]  W. J. Stevens,et al.  Effective Potentials in Molecular Quantum Chemistry , 1984 .

[18]  Lee‐Ping Wang,et al.  A Polarizable QM/MM Explicit Solvent Model for Computational Electrochemistry in Water. , 2012, Journal of chemical theory and computation.

[19]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[20]  Mu-Hyun Baik,et al.  cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. , 2006, Journal of the American Chemical Society.

[21]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[22]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[23]  Hongjun Fan,et al.  Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen , 2014, Science.

[24]  K. Merz,et al.  Assessment of the "6-31+G** + LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. , 2009, The journal of physical chemistry. A.

[25]  Andreas M. Köster,et al.  Half‐numerical evaluation of pseudopotential integrals , 2006, J. Comput. Chem..

[26]  Margaret M. Hurley,et al.  Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules , 2002 .

[27]  G. DiLabio,et al.  Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory. , 2014, The Journal of chemical physics.

[28]  H. Hellmann,et al.  A New Approximation Method in the Problem of Many Electrons , 1935 .

[29]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[30]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[31]  B. Dietzek,et al.  Structural Control of Photoinduced Dynamics in 4H-Imidazole-Ruthenium Dyes , 2012 .

[32]  T. Martínez,et al.  How Does Peripheral Functionalization of Ruthenium(II)-Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck-Condon Point? , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[34]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[35]  R. Friesner,et al.  Computing Redox Potentials in Solution: Density Functional Theory as A Tool for Rational Design of Redox Agents , 2002 .

[36]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[37]  Larry McMurchie,et al.  CALCULATION OF INTEGRALS OVER AB INITIO PSEUDOPOTENTIALS , 1981 .

[38]  W. C. Ermler,et al.  Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms , 1977 .

[39]  Gino A DiLabio,et al.  Efficient silicon surface and cluster modeling using quantum capping potentials. , 2005, The Journal of chemical physics.

[40]  P. Gombás über die metallische Bindung , 1935 .

[41]  Ruibo Wu,et al.  Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study. , 2010, Journal of chemical theory and computation.

[42]  H. Hellmann,et al.  Metallic Binding According to the Combined Approximation Procedure , 1936 .

[43]  P. Schwerdtfeger The pseudopotential approximation in electronic structure theory. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  M. Reiher,et al.  The electronic structure of the tris(ethylene) complexes [M(C2H4)3] (M=Ni, Pd, and Pt): a combined experimental and theoretical study. , 2007, Chemistry.

[45]  T. Voorhis,et al.  Direct-Coupling O2 Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts , 2011 .

[46]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[47]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[48]  W. Goddard,et al.  Ab initio effective potentials for use in molecular quantum mechanics , 1974 .

[49]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[50]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[51]  Keli Han,et al.  Photodissociation dynamics of alkyl nitrites at 266 and 355 nm: the OH product channel. , 2009, The journal of physical chemistry. A.

[52]  Paul Baybutt,et al.  Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons , 1976 .

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.