Multi-task Correlation Particle Filter for Robust Object Tracking

In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed tracker has several advantages. First, it can shepherd the sampled particles toward the modes of the target state distribution via the MCF, thereby resulting in robust tracking performance. Second, it can effectively handle large-scale variation via a particle sampling strategy. Third, it can effectively maintain multiple modes in the posterior density using fewer particles than conventional particle filters, thereby lowering the computational cost. Extensive experimental results on three benchmark datasets demonstrate that the proposed MCPF performs favorably against the state-of-the-art methods.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[5]  Larry S. Davis,et al.  Fast multiple object tracking via a hierarchical particle filter , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Changsheng Xu,et al.  Partial Occlusion Handling for Visual Tracking via Robust Part Matching , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[14]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[16]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[17]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[18]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[19]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[20]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Michael Felsberg,et al.  Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Changsheng Xu,et al.  Deep Relative Tracking , 2017, IEEE Transactions on Image Processing.

[26]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[27]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[28]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[30]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[33]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[34]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[35]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[36]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[37]  Arnold W. M. Smeulders,et al.  UvA-DARE (Digital Academic Repository) Siamese Instance Search for Tracking , 2016 .

[38]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[39]  Tianzhu Zhang,et al.  In Defense of Sparse Tracking: Circulant Sparse Tracker , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Changsheng Xu,et al.  Max-Confidence Boosting With Uncertainty for Visual Tracking , 2015, IEEE Transactions on Image Processing.

[41]  Changsheng Xu,et al.  Structural Correlation Filter for Robust Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Qiang Ji,et al.  Simultaneous Clustering and Tracklet Linking for Multi-face Tracking in Videos , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[45]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[48]  Yiannis Demiris,et al.  Visual Tracking Using Attention-Modulated Disintegration and Integration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.