Dynamic fragmentation of a brittle plate under biaxial loading: strength or toughness controlled?

The fragmentation of a brittle plate subjected to dynamic biaxial loading is investigated via numerical simulations. The aim is to extend our understanding of the dynamic processes affecting fragment size distributions. A scalable computational framework based on a hybrid cohesive zone model description of fracture and a discontinuous Galerkin formulation is employed. This enables large-scale simulations and, thus, the consideration of rich distributions of defects, as well as an accurate account of the role of stress waves. We study the dependence of the fragmentation response on defect distribution, material properties, and strain rate. A scaling law describing the dependence of fragment size on the parameters is proposed. It is found that fragmentation exhibits two distinct regimes depending on the loading rate and material defect distribution: one controlled by material strength and the other one by material toughness. At low strain rates, fragmentation is controlled by defects, whereas at high strain rates energy balance arguments dominate the fragmentation response.

[1]  N. Mott,et al.  Fragmentation of Rings and Shells: The Legacy of N.F. Mott , 2006 .

[2]  Ludovic Noels,et al.  A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications , 2006 .

[3]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[4]  François Hild,et al.  A probabilistic approach for fragmentation of brittle materials under dynamic loading , 1997 .

[5]  Arun Shukla,et al.  Dynamic failure of materials and structures , 2010 .

[6]  K. T. Ramesh,et al.  Predicting variability in the dynamic failure strength of brittle materials considering pre-existing flaws , 2011 .

[7]  L. B. Freund,et al.  Modeling and Simulation of Dynamic Fragmentation in Brittle Materials , 1999 .

[8]  W. Drugan,et al.  Dynamic fragmentation of brittle materials: analytical mechanics-based models , 2001 .

[9]  E. H. Linfoot,et al.  A Theory of Fragmentation , 2006 .

[10]  Jean-François Molinari,et al.  Characteristic fragment size distributions in dynamic fragmentation , 2006 .

[11]  Ludovic Noels,et al.  A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, Cohesive Element Method , 2011 .

[12]  H. Herrmann,et al.  Breakup of shells under explosion and impact. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[14]  Dennis E. Grady,et al.  Local inertial effects in dynamic fragmentation , 1982 .

[15]  Ludovic Noels,et al.  An explicit discontinuous Galerkin method for non‐linear solid dynamics: Formulation, parallel implementation and scalability properties , 2008 .

[16]  George A. Gazonas,et al.  The cohesive element approach to dynamic fragmentation: the question of energy convergence , 2007 .

[17]  W. Weibull A statistical theory of the strength of materials , 1939 .

[18]  N. Mott,et al.  Fragmentation of shell cases , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  Raul Radovitzky,et al.  Advances in Cohesive Zone Modeling of Dynamic Fracture , 2009 .

[20]  D. Grady,et al.  Experimental measurement of dynamic failure and fragmentation properties of metals , 1993 .

[21]  L. A. Glenn,et al.  Strain‐energy effects on dynamic fragmentation , 1986 .

[22]  Jean-François Molinari,et al.  Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes , 2010 .

[23]  M. Meyers,et al.  High-strain-rate deformation and comminution of silicon carbide , 1998 .

[24]  Vivek B. Shenoy,et al.  Disorder effects in dynamic fragmentation of brittle materials , 2003 .

[25]  K. T. Ramesh,et al.  Effects of material properties on the fragmentation of brittle materials , 2006 .

[26]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[27]  J. Molinari,et al.  How the obscuration-zone hypothesis affects fragmentation: Illustration with the cohesive-element method , 2011 .

[28]  Min Zhou,et al.  Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization , 2001 .