Combining One Class Fuzzy KNN's

This paper introduces a parallel combination of N> 2 one class fuzzy KNN(FKNN) classifiers. The classifier combination consists of a new optimization procedure based on a genetic algorithm applied to FKNN's, that differ in the kind of similarity used. We tested the integration techniques in the case of N= 5 similarities that have been recently introduced to face with categorical data sets. The assessment of the method has been carried out on two public data set, the Masquerading User Data (www.schonlau.net) and the badges database on the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/). Preliminary results show the better performance obtained by the fuzzy integration respect to the crisp one.

[1]  Joshua B. Tenenbaum,et al.  Rules and Similarity in Concept Learning , 1999, NIPS.

[2]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[3]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[4]  Salvatore J. Stolfo,et al.  One-Class Training for Masquerade Detection , 2003 .

[5]  Vito Di Gesù,et al.  New Similarity Rules for Mining Data , 2005, WIRN/NAIS.

[6]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[7]  Roy A. Maxion,et al.  Masquerade detection using truncated command lines , 2002, Proceedings International Conference on Dependable Systems and Networks.

[8]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[9]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[10]  John A. Swets,et al.  Evaluation of diagnostic systems : methods from signal detection theory , 1982 .

[11]  David M. J. Tax,et al.  One-class classification , 2001 .

[12]  Matthias Schonlau,et al.  Detecting masquerades in intrusion detection based on unpopular commands , 2000, Inf. Process. Lett..

[13]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[14]  A. Karr,et al.  Computer Intrusion: Detecting Masquerades , 2001 .

[15]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[16]  Vito Di Gesù,et al.  A genetic integrated fuzzy classifier , 2005, Pattern Recognit. Lett..

[17]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[18]  Giorgio Valentini,et al.  Ensembles of Learning Machines , 2002, WIRN.

[19]  Armando Freitas da Rocha,et al.  Neural Nets , 1992, Lecture Notes in Computer Science.

[20]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[21]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.