Reduced spin torque nano-oscillator linewidth using He + irradiation

We demonstrate an approach for improving the spectral linewidth of a spin torque nano-oscillator (STNO). Using He + ion irradiation, we tune the perpendicular magnetic anisotropy (PMA) of the STNO free layer such that its easy axis is gradually varied from strongly out-of-plane to moderate in-plane. As the PMA impacts the non-linearity N of the STNO, we can, in this way, control the threshold current, the current tunability of the frequency, and, in particular, the STNO linewidth, which dramatically improves by two orders of magnitude. Our results are in good agreement with the theory for nonlinear auto-oscillators, confirm theoretical predictions of the role of the nonlinearity, and demonstrate a straightforward path toward improving the microwave properties of STNOs.

[1]  Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism , 2016, 1604.01389.

[2]  S. Yuasa,et al.  Large Emission Power over 2 µW with High Q Factor Obtained from Nanocontact Magnetic-Tunnel-Junction-Based Spin Torque Oscillator , 2013 .

[3]  Ye. Pogoryelov,et al.  Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator , 2009, 0910.2819.

[4]  Joo-Von Kim,et al.  Line shape distortion in a nonlinear auto-oscillator near generation threshold: application to spin-torque nano-oscillators. , 2007, Physical review letters.

[5]  Q. T. Le,et al.  Direct Observation of Zhang-Li Torque Expansion of Magnetic Droplet Solitons. , 2018, Physical review letters.

[6]  J. Katine,et al.  Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. , 2006, Physical review letters.

[7]  M. Sahashi,et al.  Spin-transfer torque driven ferromagnetic resonance in nano-contact magnetoresistive devices and its characteristics , 2011 .

[8]  P. Freitas,et al.  Spin transfer torque driven higher-order propagating spin waves in nano-contact magnetic tunnel junctions , 2017, Nature Communications.

[9]  Johan Akerman,et al.  Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. , 2009, Physical review letters.

[10]  A Fukushima,et al.  Highly sensitive nanoscale spin-torque diode. , 2014, Nature materials.

[11]  I. N. Krivorotov,et al.  Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.

[12]  J. Åkerman,et al.  Order of magnitude improvement of nano-contact spin torque nano-oscillator performance , 2017, 2017 IEEE International Magnetics Conference (INTERMAG).

[13]  Q. T. Le,et al.  Low operational current spin Hall nano-oscillators based on NiFe/W bilayers , 2016 .

[14]  Baoshun Zhang,et al.  Giant spin-torque diode sensitivity in the absence of bias magnetic field , 2016, Nature communications.

[15]  Q. T. Le,et al.  Using Magnetic Droplet Nucleation to Determine the Spin Torque Efficiency and Asymmetry in Cox(Ni,Fe)1−x Thin Films , 2018, Physical Review Applied.

[16]  Hitoshi Kubota,et al.  High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junctions , 2014 .

[17]  Anders Eklund,et al.  Spin-Torque and Spin-Hall Nano-Oscillators , 2015, Proceedings of the IEEE.

[18]  J. Yue,et al.  CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability , 2018, 1803.03032.

[19]  Vasil Tiberkevich,et al.  Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. , 2008, Physical review letters.

[20]  Johan Akerman,et al.  Subterahertz ferrimagnetic spin-transfer torque oscillator , 2019, Physical Review B.

[21]  P. Kabos,et al.  Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction , 2005, IEEE Transactions on Magnetics.

[22]  Andrei Slavin,et al.  Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. , 2005, Physical review letters.

[23]  T. Devolder,et al.  Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy , 2015 .

[24]  V. Tiberkevich,et al.  Excitation of Spin Waves by Spin-Polarized Current in Magnetic Nano-Structures , 2008, IEEE Transactions on Magnetics.

[25]  D. Ravelosona,et al.  Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy , 2009, 0905.4779.

[26]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[27]  Johan Åkerman,et al.  Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. , 2013, Physical review letters.

[28]  B Ilan,et al.  Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. , 2005, Physical review letters.

[29]  Ye. Pogoryelov,et al.  Spin Torque–Generated Magnetic Droplet Solitons , 2013, Science.

[30]  Grant R. Gerhart,et al.  Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator , 2007 .

[31]  Department of Physics,et al.  Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators , 2012, 1203.3244.

[32]  William H. Rippard,et al.  Comparison of frequency, linewidth, and output power in measurements of spin-transfer nanocontact oscillators , 2006 .

[33]  Bernard Dieny,et al.  The 2014 Magnetism Roadmap , 2014 .

[34]  Q. T. Le,et al.  Impact of the Oersted Field on Droplet Nucleation Boundaries , 2018, IEEE Magnetics Letters.

[35]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[36]  Hitoshi Kubota,et al.  Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices , 2008, 0803.2013.

[37]  S. A. Banuazizi,et al.  Magnetic droplet soliton nucleation in oblique fields , 2018, 1804.08047.

[38]  B. Gurney,et al.  Nanoscale magnetic field detection using a spin torque oscillator , 2010, Nanotechnology.

[39]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[40]  Johan Åkerman,et al.  Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study , 2015 .

[41]  Grant R. Gerhart,et al.  Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle , 2008 .

[42]  J. Åkerman,et al.  Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation , 2018, AIP Advances.

[43]  P. Freitas,et al.  Magnetodynamics in orthogonal nanocontact spin-torque nano-oscillators based on magnetic tunnel junctions , 2019, Applied Physics Letters.

[44]  D. Ravelosona,et al.  Tailoring magnetism by light-ion irradiation , 2004 .