A progressive predictor-based quantum architecture search with active learning

[1]  Ronghua Shi,et al.  Two End-to-End Quantum-Inspired Deep Neural Networks for Text Classification , 2023, IEEE Transactions on Knowledge and Data Engineering.

[2]  Lvzhou Li,et al.  GSQAS: Graph Self-supervised Quantum Architecture Search , 2023, Physica A: Statistical Mechanics and its Applications.

[3]  Zhiming Huang,et al.  A GNN-based predictor for quantum architecture search , 2023, Quantum Information Processing.

[4]  Ronghua Shi,et al.  Quantum Circuit Learning With Parameterized Boson Sampling , 2023, IEEE Transactions on Knowledge and Data Engineering.

[5]  Nan Zhou,et al.  Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution , 2022, Signal Process. Image Commun..

[6]  Qing Li,et al.  Robust resource-efficient quantum variational ansatz through an evolutionary algorithm , 2022, Physical Review A.

[7]  Siyu Huang,et al.  Boosting Active Learning via Improving Test Performance , 2021, AAAI.

[8]  Paolo Andrea Erdman,et al.  Identifying optimal cycles in quantum thermal machines with reinforcement-learning , 2021, npj Quantum Information.

[9]  Claudio Gentile,et al.  Batch Active Learning at Scale , 2021, NeurIPS.

[10]  David Z. Pan,et al.  QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits , 2021, 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[11]  Antoni B. Chan,et al.  Multiple-criteria Based Active Learning with Fixed-size Determinantal Point Processes , 2021, ArXiv.

[12]  H. Neven,et al.  Entangling Quantum Generative Adversarial Networks. , 2021, Physical review letters.

[13]  Yao-Lung L. Fang,et al.  Quantum Architecture Search via Deep Reinforcement Learning , 2021, ArXiv.

[14]  Lea M. Trenkwalder,et al.  Reinforcement learning for optimization of variational quantum circuit architectures , 2021, NeurIPS.

[15]  Shenggen Zheng,et al.  Variational quantum compiling with double Q-learning , 2021, New Journal of Physics.

[16]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[17]  Chang-Yu Hsieh,et al.  Neural predictor based quantum architecture search , 2021, Mach. Learn. Sci. Technol..

[18]  M. Benedetti,et al.  Structure optimization for parameterized quantum circuits , 2021, Quantum.

[19]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[20]  Arthur Pesah,et al.  Absence of Barren Plateaus in Quantum Convolutional Neural Networks , 2020, Physical Review X.

[21]  K. Ho,et al.  Adaptive Variational Quantum Dynamics Simulations , 2020, PRX Quantum.

[22]  Min-Hsiu Hsieh,et al.  Quantum circuit architecture search for variational quantum algorithms , 2020, npj Quantum Information.

[23]  Chang-Yu Hsieh,et al.  Differentiable quantum architecture search , 2020, Quantum Science and Technology.

[24]  Lvzhou Li,et al.  Quantum generative adversarial network for generating discrete distribution , 2020, Inf. Sci..

[25]  V. Ulyantsev,et al.  MoG-VQE: Multiobjective genetic variational quantum eigensolver , 2020, 2007.04424.

[26]  Patrick J. Coles,et al.  Machine Learning of Noise-Resilient Quantum Circuits , 2020, PRX Quantum.

[27]  Patrick J. Coles,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, Physical review letters.

[28]  D. Deng,et al.  Topological Quantum Compiling with Reinforcement Learning , 2020, Physical review letters.

[29]  H. Calandra,et al.  To quantum or not to quantum: towards algorithm selection in near-term quantum optimization , 2020, Quantum Science and Technology.

[30]  Changjian Shui,et al.  Deep Active Learning: Unified and Principled Method for Query and Training , 2019, AISTATS.

[31]  Arthur G. Rattew,et al.  A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019, 1910.09694.

[32]  Marc Coram,et al.  Quantum optimization with a novel Gibbs objective function and ansatz architecture search , 2019, Physical Review Research.

[33]  Nima Anari,et al.  Batch Active Learning Using Determinantal Point Processes , 2019, ArXiv.

[34]  Terry Farrelly,et al.  Training deep quantum neural networks , 2019, Nature Communications.

[35]  Fedor Zhdanov,et al.  Diverse mini-batch Active Learning , 2019, ArXiv.

[36]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[37]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[38]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[39]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[40]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[41]  Xiao Yuan,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[42]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[43]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[44]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[45]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[46]  Zoubin Ghahramani,et al.  Deep Bayesian Active Learning with Image Data , 2017, ICML.

[47]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[48]  Dan Wang,et al.  A new active labeling method for deep learning , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[49]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[50]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .