Characterization of nonsmooth functions through their generalized gradients
暂无分享,去创建一个
[1] J. Hiriart-Urruty. New concepts in nondifferentiable programming , 1979 .
[2] R. Mifflin. Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .
[3] Vladimir F. Demyanov,et al. On quasidifferentiable mappings , 1983 .
[4] P. Hartman. On functions representable as a difference of convex functions , 1959 .
[5] R. Rockafellar. Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .
[6] Bela Martos,et al. Nonlinear programming theory and methods , 1977 .
[7] J. Hiriart-Urruty. Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .
[8] J. Penot. Calcul sous-differentiel et optimisation , 1978 .
[9] B. N. Pshenichnyi. Necessary Conditions for an Extremum , 1971 .
[10] F. Clarke. Generalized gradients and applications , 1975 .
[11] J.-B. Hiriart-Urruty,et al. Miscellanies on Nonsmooth Analysis and Optimization , 1985 .
[12] R. Ellaia,et al. The conjugate of the difference of convex functions , 1986 .
[13] D. Varberg. Convex Functions , 1973 .
[14] G. Lebourg,et al. Generic differentiability of Lipschitzian functions , 1979 .
[15] V. F. Dem'yanov,et al. Minimization of a quasi-differentiable function in a quasi-differentiable set , 1980 .
[16] G. Minty. On the monotonicity of the gradient of a convex function. , 1964 .
[17] J. Spingarn. Submonotone subdifferentials of Lipschitz functions , 1981 .
[18] F. Clarke. Generalized gradients of Lipschitz functionals , 1981 .
[19] Jean-Pierre Crouzeix. Some differentiability properties of quasiconvex functions ℝn , 1981 .
[20] Jean-Philippe Vial,et al. Strong and Weak Convexity of Sets and Functions , 1983, Math. Oper. Res..