다중 판별자를 가지는 동적 삼차원 뉴로 시스템
暂无分享,去创建一个
오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.