Bayesian Intractability Is Not an Ailment That Approximation Can Cure

[1]  Johan Kwisthout,et al.  Most probable explanations in Bayesian networks: Complexity and tractability , 2011, Int. J. Approx. Reason..

[2]  Adam N Sanborn,et al.  Rational approximations to rational models: alternative algorithms for category learning. , 2010, Psychological review.

[3]  Johan Kwisthout,et al.  How Action Understanding can be Rational, Bayesian and Tractable , 2010 .

[4]  Chris L. Baker,et al.  Action understanding as inverse planning , 2009, Cognition.

[5]  J. Kwisthout,et al.  The Computational Complexity of Probabilistic Networks , 2009 .

[6]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.

[7]  Michael C. Frank,et al.  PSYCHOLOGICAL SCIENCE Research Article Using Speakers ’ Referential Intentions to Model Early Cross-Situational Word Learning , 2022 .

[8]  Iris van Rooij,et al.  The Tractable Cognition Thesis , 2008, Cogn. Sci..

[9]  Charles Kemp,et al.  The discovery of structural form , 2008, Proceedings of the National Academy of Sciences.

[10]  Iris van Rooij,et al.  Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities , 2008, Comput. J..

[11]  Gerd Gigerenzer,et al.  Why Heuristics Work , 2008, Perspectives on psychological science : a journal of the Association for Psychological Science.

[12]  Adam N. Sanborn,et al.  Categorization as nonparametric Bayesian density estimation , 2008 .

[13]  Julian N. Marewski,et al.  Fast and Frugal Heuristics Are Plausible Models of Cognition: Reply To , 2022 .

[14]  Patricia A. Evans,et al.  Identifying Sources of Intractability in Cognitive Models: An Illustration Using Analogical Structure Mapping , 2008 .

[15]  S. Sloman,et al.  The causal psycho-logic of choice , 2006, Trends in Cognitive Sciences.

[16]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[17]  J. Tenenbaum,et al.  Special issue on “Probabilistic models of cognition , 2022 .

[18]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[19]  Christopher D. Manning,et al.  Probabilistic models of language processing and acquisition , 2006, Trends in Cognitive Sciences.

[20]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[21]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[22]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[23]  M. Littman,et al.  The Computational Complexity of Probabilistic Planning , 1998, J. Artif. Intell. Res..

[24]  Ashraf M. Abdelbar,et al.  Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..

[25]  D. Nilsson,et al.  An efficient algorithm for finding the M most probable configurationsin probabilistic expert systems , 1998, Stat. Comput..

[26]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .

[27]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[28]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[29]  Bon K. Sy,et al.  Reasoning MPE to Multiply Connected Belief Networks Using Message Passing , 1992, AAAI.

[30]  John R. Anderson The Adaptive Character of Thought , 1990 .

[31]  Ross D. Shachter Probabilistic Inference and Influence Diagrams , 1988, Oper. Res..

[32]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .