Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation

A high-performance flexible piezoelectric hybrid nanogenerator (HNG) based on lead-free perovskite zinc stannate (ZnSnO3) nanocubes and polydimethylsiloxane (PDMS) composite with multiwall carbon nanotubes (MWCNTs) as supplement filling material is demonstrated. Even without any electrical poling treatment, the HNG possesses an open-circuit voltage of 40 V and a short-circuit current of 0.4 μA, respectively, under repeated human finger impact. It has been demonstrated that the output volume power density of 10.8 μW cm(-3) from a HNG can drive several colour light emitting diodes (LEDs) and a charge capacitor that powers up a calculator, indicating an effective means of energy harvesting power source with high energy conversion efficiency (∼1.17%) for portable electronic devices.

[1]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[2]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[3]  K. Momeni A multiscale approach to nanocomposite electrical generators , 2014 .

[4]  Wolfram Wersing,et al.  Piezoelectricity: Evolution and Future of a Technology , 2008 .

[5]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[6]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[7]  G. Odegard,et al.  Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires , 2010 .

[8]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[9]  Hui Yan,et al.  Synthesis and Piezoelectric Properties of KNbO3 Ceramics by Molten-Salt Synthetic Method , 2009 .

[10]  X. D. Xie,et al.  Wind energy harvesting with a piezoelectric harvester , 2013 .

[11]  W. Jo,et al.  Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation , 2014, Nanoscale Research Letters.

[12]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[13]  Manoj Kumar Gupta,et al.  Unidirectional High‐Power Generation via Stress‐Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator , 2014 .

[14]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[15]  Sihong Wang,et al.  In Vivo Powering of Pacemaker by Breathing‐Driven Implanted Triboelectric Nanogenerator , 2014, Advanced materials.

[16]  M. Itoh,et al.  AgNbO3: A lead-free material with large polarization and electromechanical response , 2007 .

[17]  Tao Yang,et al.  Powder synthesis and properties of LiTaO3 ceramics , 2014 .

[18]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[19]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[20]  T. Katsumata,et al.  A polar oxide ZnSnO3 with a LiNbO3-type structure. , 2008, Journal of the American Chemical Society.

[21]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[22]  Yan Zhang,et al.  Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. , 2012, ACS nano.

[23]  J. Plaza,et al.  PDMS-based, magnetically actuated variable optical attenuators obtained by soft lithography and inkjet printing technologies , 2014 .

[24]  F. Hsiao,et al.  Crystal structure and ferroelectricity of nanocrystalline barium titanate thin films , 2002 .

[25]  Posternak,et al.  Ab initio study of piezoelectricity and spontaneous polarization in ZnO. , 1994, Physical review. B, Condensed matter.

[26]  Yan Zhang,et al.  Pyroelectric nanogenerators for driving wireless sensors. , 2012, Nano letters.

[27]  Han‐Ki Kim,et al.  Charge‐Generating Mode Control in High‐Performance Transparent Flexible Piezoelectric Nanogenerators , 2011 .

[28]  Giancarlo Canavese,et al.  Flexible Tactile Sensing Based on Piezoresistive Composites: A Review , 2014, Sensors.

[29]  Dukhyun Choi,et al.  p-Type polymer-hybridized high-performance piezoelectric nanogenerators. , 2012, Nano letters.

[30]  J. Son,et al.  Enhanced ferroelectric polarization in tetragonally strained NaNbO3 thin film on single crystal Rh substrate , 2012 .

[31]  Dipankar Mandal,et al.  Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers. , 2014, Physical chemistry chemical physics : PCCP.

[32]  Mitra Dutta,et al.  Piezoelectricity in wurtzite polar semiconductor nanowires: A theoretical study , 2011 .

[33]  J. H. You,et al.  Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator , 2013 .

[34]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[35]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[36]  Sang‐Woo Kim,et al.  Recent advances in power generation through piezoelectric nanogenerators , 2011 .