Large room-temperature spin-dependent tunneling magnetoresistance in polycrystalline Fe3O4 films

Polycrystalline Fe3O4 films have been prepared by reactive sputtering at room temperature. Transmission electron microscopy images show that the films consist of quite uniform Fe3O4 grains well separated by grain boundaries. It was found that the tunneling of spin-polarized electrons across the antiferromagnetic coupled grain boundaries dominates the transport properties of the films. Magnetoresistance (MR) {=[ρ(H)−ρ(0)]/ρ(0)} shows linear and quadratic magnetic-field dependence in the low-field range when the field is applied parallel and perpendicular to film plane, which is similar to the behaviors observed in the epitaxial Fe3O4 films consisting of a large fraction of antiferromagnetic antiphase domain boundaries. At 300 K, the size of the MR reaches −7.4% under a 50-kOe magnetic field, which is a very large MR for polycrystalline Fe3O4 films.

[1]  D. Peng,et al.  Magnetic properties and magnetoresistance in small iron oxide cluster assemblies , 2002 .

[2]  T. Palstra,et al.  Origin of the increased resistivity in epitaxial Fe3O4 films , 2002 .

[3]  T. Palstra,et al.  Spin-polarized transport across sharp antiferromagnetic boundaries. , 2002, Physical review letters.

[4]  J. Hayakawa,et al.  Development of half-metallic ultrathin Fe3O4 films for spin-transport devices , 2002 .

[5]  Vinayak P. Dravid,et al.  Fabrication and properties of heteroepitaxial magnetite (Fe3O4) tunnel junctions , 1998 .

[6]  S. Maekawa,et al.  ENHANCED MAGNETORESISTANCE IN INSULATING GRANULAR SYSTEMS : EVIDENCE FOR HIGHER-ORDER TUNNELING , 1998 .

[7]  J. Coey,et al.  Magnetoresistance of magnetite , 1998 .

[8]  J. Coey,et al.  Magnetoresistance of chromium dioxide powder compacts , 1998 .

[9]  J. Chapman,et al.  Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films , 1997 .

[10]  W. Qian,et al.  MAGNETORESISTANCE AND MAGNETIC PROPERTIES OF EPITAXIAL MAGNETITE THIN FILMS , 1997 .

[11]  Yang Gao,et al.  Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy , 1997 .

[12]  Gridin Vv,et al.  Magnetoresistance extremum at the first-order Verwey transition in magnetite (Fe3O4). , 1996 .

[13]  Inoue,et al.  Theory of tunneling magnetoresistance in granular magnetic films. , 1996, Physical review. B, Condensed matter.

[14]  Spada,et al.  Anomalous moment and anisotropy behavior in Fe3O4 films. , 1996, Physical review. B, Condensed matter.

[15]  C. Chien,et al.  Giant negative magnetoresistance in granular ferromagnetic systems (invited) , 1993 .

[16]  P. Sheng Feature article: Electronic transport in granular metal films† , 1992 .

[17]  Zhang,et al.  Electron states, magnetism, and the Verwey transition in magnetite. , 1991, Physical review. B, Condensed matter.

[18]  Akira Yanase,et al.  Band Structure in the High Temperature Phase of Fe3O4 , 1984 .

[19]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[20]  E. Verwey,et al.  Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures , 1939, Nature.