Thermal-lens study of thermo-optical properties of tellurite glasses

Mode-mismatched Thermal Lens (TL) measurements were performed in 70TeO2–19WO3–7Na2O–4Nb2O5 (% mol) tellurite glasses doped with either Er3+ or Tm3+ and co-doped with Er3+/Tm3+ ions. Thermo-optical parameters (D, K, ds/dQ and ds/dT) were obtained in function of thulium concentrations (0.39–1.6) × 10 20 ions/cm3. For Er3+/Tm3+ co-doped tellurite glasses, D and K values are practically independent of the Tm3+ concentrations used in this study. The average values of D and ds/dT obtained for tellurite glasses are: (3.1 ± 0.2) × 10−3 cm2/s and (16 ± 3) × 10−6 K−1, respectively.

[1]  A. Hernandes,et al.  Time-resolved thermal lens measurements of thermo-optical properties of fluoride glasses , 1999 .

[2]  M. Baesso,et al.  Thermal lens scanning of the glass transition in polymers , 2001 .

[3]  F. Smektala,et al.  Thermal and optical properties of chalcohalide glass , 2001 .

[4]  W. J. Chung,et al.  Visible emissions at 592 and 613 nm in Er3 , 2004 .

[5]  M. A. Sidkey,et al.  Ultrasonic studies of (TeO2)1-x-(V2O5)x glasses , 1997 .

[6]  M. Baesso,et al.  Fluorescence quantum efficiency measurements using the thermal lens technique , 2003 .

[7]  Tomaz Catunda,et al.  Thermal lensing in poly(vinyl alcohol)/polyaniline blends , 2002 .

[8]  M. Baesso,et al.  Nd2O3 doped low silica calcium aluminosilicate glasses: Thermomechanical properties , 1999 .

[9]  C. Askins,et al.  Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients. , 1991, Applied optics.

[10]  W. Ryba-Romanowski Effect of temperature and activator concentration on luminescence decay of erbium-doped tellurite glass , 1990 .

[11]  Jun Shen,et al.  Three‐dimensional model for cw laser‐induced mode‐mismatched dual‐beam thermal lens spectrometry and time‐resolved measurements of thin‐film samples , 1994 .

[12]  C. César,et al.  Er3+–Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band , 2006 .

[13]  Setsuhisa Tanabe,et al.  Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+ , 1990 .

[14]  H. Jenssen,et al.  Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method. , 2003, Optics letters.

[15]  A. Hernandes,et al.  Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry , 1999 .

[16]  D. Vollet,et al.  Spectroscopic and thermal characterization in poly( p-phenylene vinylene)/sol-gel silica sample , 2003 .

[17]  B. Woods,et al.  Thermomechanical and thermo-optical properties of the LiCaAlF 6 :Cr 3+ laser material , 1991 .

[18]  D. Hewak,et al.  Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses , 2001 .

[19]  M. Baesso,et al.  Structure and properties of water free Nd2O3 doped low silica calcium aluminate glasses , 1999 .

[20]  H. Jenssen,et al.  Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry , 2004 .

[21]  S. Inoue,et al.  Refractive index patterning of tellurite glass surfaces by ultra short pulse laser spot heating , 2002 .

[22]  M. Baesso,et al.  Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review , 2000 .

[23]  Raymond J. Beach,et al.  Properties of Cr:LiSrAIF(6) crystals for laser operation. , 1994, Applied optics.

[24]  Setsuhisa Tanabe,et al.  Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in codoped glasses by red-laser pumping , 1995 .

[25]  E. Araújo,et al.  Thermo-optical characterization of tellurite glasses by thermal lens, thermal relaxation calorimetry and interferometric methods , 2006 .