Processing Core/Alloy/Shell Nanoparticles: Tunable Optical Properties and Evidence for Self-Limiting Alloy Growth

The postsynthetic processing of nanomaterials may allow researchers to reach specific properties, morphologies, or phase regimes that are not accessible by simple synthesis alone. Here, we take advantage of atomic interdiffusion at nanoparticle interfaces to fabricate core/alloy and core/alloy/shell nanoparticles. Modest temperature changes were found to have profound effects for the interfacial alloying of the confined nanosystem. The alloy formation and subsequent interdiffusion allowed us to tailor nanoparticle composition and ultrastructure, as well as surface plasmon response. This processing step, which involves the layer-by-layer formation of a core/alloy/shell morphology, utilizes hydrothermal annealing provided by automated microwave irradiation to control solute deposition, as well as alloy thickness. As a proof-of-principle system, we employed a Au/AuxAg1–x/Ag nanosystem, due, in large part, to its miscible phase diagram and rich plasmonic behavior. Nanostructure morphology was characterized by...

[1]  Peter N. Njoki,et al.  Layer-by-layer processing and optical properties of core/alloy nanostructures. , 2011, Journal of the American Chemical Society.

[2]  P. Voorhees,et al.  Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .

[3]  M. Maye,et al.  Size Control and Photophysical Properties of Quantum Dots Prepared via a Novel Tunable Hydrothermal Route , 2010 .

[4]  Shui-Tong Lee,et al.  Modeling size and shape effects on the order-disorder phase-transition temperature of CoPt nanoparticles. , 2010, Small.

[5]  Y. Wada,et al.  In Situ Observation of Nonequilibrium Local Heating as an Origin of Special Effect of Microwave on Chemistry , 2010 .

[6]  C. Ricolleau,et al.  Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. , 2009, Nature materials.

[7]  A. Alivisatos,et al.  Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. , 2009, Journal of the American Chemical Society.

[8]  P. Galindo,et al.  Direct observation of a surface induced disordering process in magnetic nanoparticles. , 2009, Physical review letters.

[9]  M. Hou,et al.  Equilibrium ordering properties of Au-Pd alloys and nanoalloys , 2009 .

[10]  G. Yang,et al.  Surface energy of nanostructural materials with negative curvature and related size effects. , 2009, Chemical reviews.

[11]  Bartosz A. Grzybowski,et al.  Chemistry in motion : reaction-diffusion systems for micro- and nanotechnology , 2009 .

[12]  Seong Kyu Kim,et al.  Multiple surface plasmon modes for gold/silver alloy nanorods. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  Younan Xia,et al.  Pushing nanocrystal synthesis toward nanomanufacturing. , 2009, ACS nano.

[14]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  C. Boothroyd,et al.  Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. , 2008, Small.

[16]  Seungho Cho,et al.  Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structures , 2008 .

[17]  D. Son,et al.  Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. , 2008, Journal of the American Chemical Society.

[18]  G. Strouse,et al.  Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. , 2008, Journal of the American Chemical Society.

[19]  C. Mirkin,et al.  Mechanistic study of photomediated triangular silver nanoprism growth. , 2008, Journal of the American Chemical Society.

[20]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[21]  Margit Zacharias,et al.  Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. , 2007, Small.

[22]  Daniel I. C. Wang,et al.  Mechanistic study on the bis(p-sulfonatophenyl)phenylphosphine synthesis of monometallic Pt hollow nanoboxes using Ag*-Pt core-shell nanocubes as sacrificial templates , 2007 .

[23]  C. Schuh,et al.  Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system , 2007 .

[24]  Chris Boothroyd,et al.  Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions , 2007 .

[25]  Peidong Yang,et al.  Shaping binary metal nanocrystals through epitaxial seeded growth. , 2007, Nature materials.

[26]  David Cebon,et al.  Materials: Engineering, Science, Processing and Design , 2007 .

[27]  Younan Xia,et al.  Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. , 2007, Journal of the American Chemical Society.

[28]  P. Mélinon,et al.  Clusters and Colloids , 2007 .

[29]  W. Cheung,et al.  Molecularly Tuned Size Selectivity in Thermal Processing of Gold Nanoparticles , 2006 .

[30]  M. Asta,et al.  The nature of A1–L10 ordering transitions in alloy nanoparticles: A Monte Carlo study , 2006 .

[31]  Audrey Moores,et al.  The plasmon band in noble metal nanoparticles: an introduction to theory and applications , 2006 .

[32]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[33]  Joseph M. McLellan,et al.  Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy. , 2006, The journal of physical chemistry. B.

[34]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[35]  Chengxin Wang,et al.  Physical and chemical origin of size-dependent spontaneous interfacial alloying of core–shell nanostructures , 2006 .

[36]  E. Rabani,et al.  Untitled #2 , 2020, Gender Futurity, Intersectional Autoethnography.

[37]  J. Gerbec,et al.  Microwave-enhanced reaction rates for nanoparticle synthesis. , 2005, Journal of the American Chemical Society.

[38]  G. Hartland,et al.  Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy. , 2005, The journal of physical chemistry. B.

[39]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[40]  Joseph M. McLellan,et al.  Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. , 2005, Nano letters.

[41]  T. Hirayama,et al.  Long-range order parameter of single L10-FePd nanoparticle determined by nanobeam electron diffraction : Particle size dependence of the order parameter , 2005 .

[42]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[43]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[44]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[45]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[46]  M. Engelhard,et al.  Composition-controlled synthesis of bimetallic gold-silver nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  Catherine J. Murphy,et al.  Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed , 2004 .

[48]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[49]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[50]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[51]  Younan Xia,et al.  Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction , 2003 .

[52]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[53]  T. Ohkubo,et al.  Size effect on the ordering of FePt granular films , 2003 .

[54]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[55]  Catherine J. Murphy,et al.  Solution-Phase Synthesis of Sub-10 nm Au−Ag Alloy Nanoparticles , 2002 .

[56]  Charles F Vardeman,et al.  Size-dependent spontaneous alloying of Au-Ag nanoparticles. , 2002, Journal of the American Chemical Society.

[57]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[58]  M. Moskovits,et al.  Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum , 2002 .

[59]  Younan Xia,et al.  Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors , 2002 .

[60]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[61]  T. Hudlický Organic Synthesis: Theory and Applications , 2001 .

[62]  A. Loupy,et al.  A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations , 2001 .

[63]  Joel I. Gersten,et al.  The Physics and Chemistry of Materials , 2001 .

[64]  J. Gilman,et al.  Nanotechnology , 2001 .

[65]  A. Henglein,et al.  Laser-Induced Inter-Diffusion in AuAg Core−Shell Nanoparticles , 2000 .

[66]  M. Maye,et al.  Manipulating core-shell reactivities for processing nanoparticle sizes and shapes , 2000 .

[67]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[68]  Mostafa A. El-Sayed,et al.  Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition , 1999 .

[69]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[70]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[71]  P. Gaillard,et al.  MICROWAVE HEATING AS A NEW WAY TO INDUCE LOCALIZED ENHANCEMENTS OF REACTION RATE. NON-ISOTHERMAL AND HETEROGENEOUS KINETICS , 1996 .

[72]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[73]  R. G. Freeman,et al.  Ag-Clad Au Nanoparticles: Novel Aggregation, Optical, and Surface-Enhanced Raman Scattering Properties , 1996 .

[74]  A. Hippel,et al.  Dielectric Materials and Applications , 1995 .

[75]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[76]  H. Weller,et al.  Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide , 1994 .

[77]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[78]  M. Steigerwald,et al.  The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor , 1989 .

[79]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[80]  K. B. Morris Principles of Chemical Equilibrium , 1965 .