Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems

We describe a multistage, stochastic, mixed-integer programming model for planning capacity expansion of production facilities. A scenario tree represents uncertainty in the model; a general mixed-integer program defines the operational submodel at each scenario-tree node, and capacity-expansion decisions link the stages. We apply “variable splitting” to two model variants, and solve those variants using Dantzig-Wolfe decomposition. The Dantzig-Wolfe master problem can have a much stronger linear programming relaxation than is possible without variable splitting, over 700% stronger in one case. The master problem solves easily and tends to yield integer solutions, obviating the need for a full branch-and-price solution procedure. For each scenario-tree node, the decomposition defines a subproblem that may be viewed as a single-period, deterministic, capacity-planning problem. An effective solution procedure results as long as the subproblems solve efficiently, and the procedure incorporates a good “duals stabilization method.” We present computational results for a model to plan the capacity expansion of an electricity distribution network in New Zealand, given uncertain future demand. The largest problem we solve to optimality has six stages and 243 scenarios, and corresponds to a deterministic equivalent with a quarter of a million binary variables.

[1]  Jan Karel Lenstra,et al.  The complexity of the network design problem : (preprint) , 1977 .

[2]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[3]  Werner Römisch,et al.  Duality gaps in nonconvex stochastic optimization , 2004, Math. Program..

[4]  S. Raghavan,et al.  Strong formulations for network design problems with connectivity requirements , 2005, Networks.

[5]  Morten Riis,et al.  A bicriteria stochastic programming model for capacity expansion in telecommunications , 2002, Math. Methods Oper. Res..

[6]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[7]  Oktay Günlük,et al.  Robust capacity planning in semiconductor manufacturing , 2005 .

[8]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[9]  Panos M. Pardalos,et al.  Design of survivable networks , 2006 .

[10]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[11]  Hanif D. Sherali,et al.  Exploiting Special Structures in Constructing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems , 1998, Oper. Res..

[12]  M. Stoer Design of Survivable Networks , 1993 .

[13]  Alan S. Manne,et al.  Investments for Capacity Expansion. Size, Location, and Time-Phasing. Edited by A.S. Manne. Studies in the Economic Development of India, n° 5. London, G. Allen & Unwin Ltd., 1967, 239 p., 45/-. , 1967, Recherches économiques de Louvain.

[14]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[15]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[16]  Hanan Luss,et al.  Operations Research and Capacity Expansion Problems: A Survey , 1982, Oper. Res..

[17]  Shabbir Ahmed,et al.  A Multi-Stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty , 2003, J. Glob. Optim..

[18]  Morten Riis,et al.  Capacitated Network Design with Uncertain Demand , 2002, INFORMS J. Comput..

[19]  J. Krarup,et al.  Plant location, Set Covering and Economic Lot Size: An 0 (mn)-Algorithm for Structured Problems , 1977 .

[20]  Richard J. Giglio,et al.  Stochastic Capacity Models , 1970 .

[21]  R. Gibrat,et al.  Application of Linear Programming to Investments in the Electric Power Industry , 1957 .

[22]  Daniel Bienstock,et al.  Strong inequalities for capacitated survivable network design problems , 2000, Math. Program..

[23]  Jan A. Van Mieghem Capacity Management, Investment, and Hedging: Review and Recent Developments , 2003 .

[24]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[25]  Purushothaman Damodaran,et al.  Branch-and-Price Methods for Prescribing Profitable Upgrades of High-Technology Products with Stochastic Demands , 2004, Decis. Sci..

[26]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[27]  Peter Eades,et al.  On Optimal Trees , 1981, J. Algorithms.

[28]  E. Chong,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[29]  BalasEgon,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[30]  Manfred W. Padberg,et al.  Perfect zero–one matrices , 1974, Math. Program..

[31]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[32]  Nikolaos V. Sahinidis,et al.  An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion , 2003, Oper. Res..

[33]  Jan A. Van Mieghem,et al.  Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments , 2003, Manuf. Serv. Oper. Manag..

[34]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[35]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[36]  Rüdiger Schultz,et al.  Stochastic programming with integer variables , 2003, Math. Program..

[37]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[38]  K. Singh,et al.  Column-Generation for Capacity-Expansion Planning of Electricity Distribution Networks , 2004 .

[39]  A. S. Manne CAPACITY EXPANSION AND PROBABILISTIC GROWTH , 1961 .

[40]  Suvrajeet Sen,et al.  A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems , 2004, Manag. Sci..

[41]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[42]  Morten Riis,et al.  Multiperiod capacity expansion of a telecommunications connection with uncertain demand , 2004, Comput. Oper. Res..

[43]  Laureano F. Escudero,et al.  BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs , 2003, Eur. J. Oper. Res..

[44]  R. Kevin Wood,et al.  Solving a class of stochastic mixed-integer programs with branch and price , 2006, Math. Program..

[45]  M. Laguna,et al.  Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty , 1998 .

[46]  A. Ruszczynski Stochastic Programming Models , 2003 .

[47]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[48]  Andreas Grothey,et al.  Stochastic Unit Commitment Problem , 2008 .

[49]  Takayuki Shiina,et al.  Stochastic Programming with Integer Variables , 2007, CSC.

[50]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[51]  Kai Huang,et al.  The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty , 2009, Oper. Res..

[52]  O. Berman,et al.  A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand , 1994 .

[53]  John Freidenfelds,et al.  Capacity Expansion when Demand Is a Birth-Death Random Process , 1980, Oper. Res..

[54]  Laurence A. Wolsey,et al.  An exact algorithm for IP column generation , 1994, Oper. Res. Lett..

[55]  D. Ryan,et al.  On the integer properties of scheduling set partitioning models , 1988 .

[56]  G. Nemhauser,et al.  Integer Programming , 2020 .

[57]  T. Morton,et al.  Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs , 1998 .

[58]  Robert D. Doverspike,et al.  Network planning with random demand , 1994, Telecommun. Syst..

[59]  A. Philpott,et al.  Column-Generation for Design of Survivable Electricity Distribution Networks , 2004 .

[60]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[61]  Shabbir Ahmed,et al.  The value of multi-stage stochastic programming in capacity planning under uncertainty , 2005 .

[62]  Martin W. P. Savelsbergh,et al.  A Branch-and-Price Algorithm for the Generalized Assignment Problem , 1997, Oper. Res..

[63]  John M. Mulvey,et al.  Formulating Two-Stage Stochastic Programs for Interior Point Methods , 1991, Oper. Res..

[64]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[65]  Leif H. Appelgren,et al.  A Column Generation Algorithm for a Ship Scheduling Problem , 1969 .

[66]  Zhi-Long Chen,et al.  A scenario-based stochastic programming approach for technology and capacity planning , 2002, Comput. Oper. Res..

[67]  Jacek Gondzio,et al.  Reoptimization With the Primal-Dual Interior Point Method , 2002, SIAM J. Optim..

[68]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[69]  Linus Schrage,et al.  OR Practice - A Scenario Approach to Capacity Planning , 1989, Oper. Res..