Thermal-response time of superconducting transition-edge microcalorimeters

We investigate limits on the thermal-response time of superconducting transition-edge microcalorimeters. For operation at 0.1 K, we show that the lower limit on the response time of a superconducting transition-edge microcalorimeter is of order 1 μs due to the heat diffusion time, electrical instabilities, the amplifier noise, and the critical current of the superconducting film. The response time is not limited by self-heating effects and is independent of the intended photon energy. However, design constraints associated with the inductance of the bias circuit make it difficult to achieve the fastest response times for devices with heat capacities high enough for x-ray and gamma-ray detection.

[1]  J. Clarke,et al.  Quasiparticle branch mixing rates in superconducting aluminum , 1979 .

[2]  J. Clem,et al.  Flux-flow noise in superconductors , 1981 .

[3]  M. Beasley,et al.  Phase-slip centers and nonequilibrium processes in superconducting tin microbridges , 1974 .

[4]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[5]  D. Prober,et al.  Inelastic electron scattering mechanisms in clean aluminum films , 1984 .

[6]  G. Gurp,et al.  MEASUREMENT OF NOISE IN THE RESISTIVE STATE OF TYPE II SUPERCONDUCTORS , 1965 .

[7]  Betty A. Young,et al.  A QUASIPARTICLE-TRAP-ASSISTED TRANSITION-EDGE SENSOR FOR PHONON-MEDIATED PARTICLE DETECTION , 1995 .

[8]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[9]  M. Devoret,et al.  Energy distribution function of quasiparticles in mesoscopic wires , 1997 .

[10]  J. Martinis,et al.  A series array of DC SQUIDs , 1991 .

[11]  A. Kadin,et al.  Magnetic field dependence of relaxation times in nonequilibrium superconductors , 1978 .

[12]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[13]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[14]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[15]  John M. Martinis,et al.  High‐resolution, energy‐dispersive microcalorimeter spectrometer for X‐ray microanalysis , 1997 .

[16]  D. McCammon,et al.  Thermal calorimeters for high resolution X-ray spectroscopy , 1993 .

[17]  R. Huebener,et al.  Current-induced breakdown of superconductivity in constricted type I superconducting films , 1976 .