Recursive Estimation of Spacecraft Position and Velocity Using X-ray Pulsar Time of Arrival Measurements

The use of pulsars for spacecraft position determination has been considered since their discovery. These celestial sources provide unique signals that can be detected by sensors placed onboard spacecraft. Upon sufficient detection and processing, these signals can be used to generate range measurements with respect to an inertial ref- erence location. Multiple measurements can be used to maintain an accurate navigation solution and enhance autonomous vehicle operation. This paper provides a description of blending pulsar-derived range measurements within a Kalman filter for continuous determination of Earth-orbiting spacecraft position and velocity. Several examples at different orbital altitudes are presented to establish the expected performance using recursive meas- urements obtained from models of pulsed X-ray signals.

[1]  D. Pines,et al.  SPACECRAFT NAVIGATION USING X-RAY PULSARS , 2006 .

[2]  S. Sheikh The Use Of Variable Celestial X-ray Sources For Spacecraft Navigation , 2005 .

[3]  Paul W. Schumacher,et al.  History of Analytical Orbit Modeling in the U.S. Space Surveillance System , 2004 .

[4]  Bonn,et al.  BeppoSAX observation of PSR B1937+21 , 2003, astro-ph/0310299.

[5]  M. Colpi,et al.  Re-examining the X-ray versus spin-down luminosity correlation of rotation powered pulsars , 2001, astro-ph/0109452.

[6]  Michael Paul Kowalski,et al.  THE UNCONVENTIONAL STELLAR ASPECT (USA) EXPERIMENT ON ARGOS , 2001 .

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[9]  D. N. Matsakis,et al.  A STATISTIC FOR DESCRIBING PULSAR AND CLOCK STABILITIES , 1997 .

[10]  W. Becker,et al.  The X-ray luminosity of rotation-powered neutron stars , 1997, astro-ph/9708169.

[11]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[12]  P. Charles,et al.  Exploring the X-ray Universe: X-ray emission and interaction with matter , 2010 .

[13]  Chris Stormer,et al.  Explanatory Supplement to the Astronomical Almanac , 1995 .

[14]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[15]  Kent S. Wood,et al.  Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite , 1993, Defense, Security, and Sensing.

[16]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[17]  G. Fraser X-ray Detectors in Astronomy , 1989 .

[18]  R. Hellings,et al.  Relativistic effects in astronomical timing measurements. , 1986 .

[19]  D. Stinebring,et al.  Recent Progress in the Understanding of Pulsars , 1986 .

[20]  A. Maldonado,et al.  Autonomous spacecraft navigation - Extended Kalman filter estimation of classical orbital parameters , 1984 .

[21]  S. Butman,et al.  Navigation Using X-Ray Pulsars , 1981 .

[22]  Felix R. Hoots,et al.  Models for Propagation of NORAD Element Sets , 1980 .

[23]  Theodore D. Moyer,et al.  Transformation from proper time on Earth to coordinate time in solar system barycentric space-time frame of reference , 1976 .

[24]  S. Teukolsky,et al.  Arrival-time analysis for a pulsar in a binary system. , 1976 .

[25]  G. Downs Interplanetary navigation using pulsating radio sources , 1974 .

[26]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[27]  P. R. Escobal,et al.  Methods of orbit determination , 1976 .

[28]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[29]  R Jastrow,et al.  Satellite Orbits. , 1961, Science.