Application of parallel computing to stochastic parameter estimation in environmental models

Parameter estimation or model calibration is a common problem in many areas of process modeling, both in on-line applications such as real-time flood forecasting, and in off-line applications such as the modeling of reaction kinetics and phase equilibrium. The goal is to determine values of model parameters that provide the best fit to measured data, generally based on some type of least-squares or maximum likelihood criterion. Usually, this requires the solution of a non-linear and frequently non-convex optimization problem. In this paper we describe a user-friendly, computationally efficient parallel implementation of the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm for stochastic estimation of parameters in environmental models. Our parallel implementation takes better advantage of the computational power of a distributed computer system. Three case studies of increasing complexity demonstrate that parallel parameter estimation results in a considerable time savings when compared with traditional sequential optimization runs. The proposed method therefore provides an ideal means to solve complex optimization problems.

[1]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[2]  Ben Paechter,et al.  PSFGA : Parallel processing and evolutionary computation for multiobjective optimisation , 2004 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[7]  David Abramson,et al.  Constructing school timetables using simulated annealing: sequential and parallel algorithms , 1991 .

[8]  C. Pennycuick,et al.  Computer simulation of fat and muscle burn in long-distance bird migration , 1998, Journal of theoretical biology.

[9]  Yu-Shu Wu,et al.  An efficient parallel-computing method for modeling nonisothermal multiphase flow and multicomponent transport in porous and fractured media , 2002 .

[10]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[11]  Bruno Bruderer,et al.  Stopover strategies in passerine bird migration: a simulation study. , 2002, Journal of theoretical biology.

[12]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[15]  Sven E. Eklund,et al.  A massively parallel architecture for distributed genetic algorithms , 2004, Parallel Comput..

[16]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[17]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[18]  Wesley W. Wallender,et al.  Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization / W06503, doi:10.1029/2003WR002706 , 2004 .

[19]  Willem Bouten,et al.  Pareto front analysis of flight time and energy use in long-distance bird migration , 2007 .

[20]  Alex Rapaport,et al.  Mpi-2: extensions to the message-passing interface , 1997 .

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  Glenn E. Hammond,et al.  Application of Jacobian-free Newton–Krylov with physics-based preconditioning to biogeochemical transport , 2005 .

[23]  Jasper A. Vrugt,et al.  One‐, two‐, and three‐dimensional root water uptake functions for transient modeling , 2001 .

[24]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[25]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[26]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[27]  Richard H. Byrd,et al.  Parallel global optimization: numerical methods, dynamic scheduling methods, and application to molecular configuration , 1994 .

[28]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Enrique Alba,et al.  A survey of parallel distributed genetic algorithms , 1999, Complex..

[31]  Francisco Herrera,et al.  Hybrid Distributed Real-Coded Genetic Algorithms , 1998, PPSN.

[32]  B. M. Hill,et al.  Bayesian Inference in Statistical Analysis , 1974 .

[33]  Alerstam The geographical scale factor in orientation of migrating birds , 1996, The Journal of experimental biology.

[34]  Thomas F. Coleman,et al.  Isotropic effective energy simulated annealing searches for low energy molecular cluster states , 1993, Comput. Optim. Appl..

[35]  A. E. Fincham,et al.  Parallel Computation , 1999, Algorithms and Theory of Computation Handbook.

[36]  Patricia K. Fasel,et al.  Virtual watersheds: simulating the water balance of the Rio Grande Basin , 2004, Computing in Science & Engineering.

[37]  Enrique Alba,et al.  Parallel heterogeneous genetic algorithms for continuous optimization , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[38]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[39]  Jorge J. Moré,et al.  E-optimal solutions to distance geometry problems via global continuation , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[40]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[41]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .