Progress in direct-drive inertial confinement fusion

Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJUV OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ∼200mg∕cm2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100g∕cm3 and are in good agreement with hydrodynamic simulations. The implosions were performed using an 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., P...

[1]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[2]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[3]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[4]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[5]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[6]  D. K. Bradley,et al.  Laser-driven implosion of thermonuclear fuel to 20 to 40 g cm–3 , 1988, Nature.

[7]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[8]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[9]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[10]  Y. Lin,et al.  Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.

[11]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[12]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[13]  S. Skupsky,et al.  Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .

[14]  Chihiro Yamanaka,et al.  Inertial confinement fusion: The quest for ignition and energy gain using indirect drive , 1999 .

[15]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[16]  R. Town,et al.  Analysis of a direct-drive ignition capsule designed for the National Ignition Facility , 2001 .

[17]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[18]  P. B. Radha,et al.  Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at OMEGA , 2002 .

[19]  B. G. Logan,et al.  The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme , 2003 .

[20]  S. Skupsky,et al.  Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket , 2003 .

[21]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[22]  V. A. Smalyuk,et al.  Direct-drive, cryogenic target implosions on OMEGA , 2004 .

[23]  J. Meyer-ter-Vehn,et al.  Inertial confinement by spherical implosion , 2004 .

[24]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[25]  J. Knauer,et al.  Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method , 2005 .

[26]  J. D. Salmonson,et al.  Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .

[27]  Edward I. Moses,et al.  The national ignition facility: path to ignition in the laboratory , 2006 .

[28]  S. Skupsky,et al.  Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .

[29]  P. Baclet,et al.  The Cryogenic Target for Ignition on the LMJ: Useful Tools to Achieve Nominal Temperature and Roughness Conditions of the DT Solid Layer , 2006 .

[30]  P. B. Radha,et al.  High-rhoR implosions for fast-ignition fuel assembly. , 2007, Physical review letters.

[31]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[32]  V. Goncharov,et al.  Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .

[33]  Michael H. Key,et al.  Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .

[34]  P. B. Radha,et al.  Cryogenic target-implosion experiments on OMEGA , 2008 .

[35]  R. S. Craxton,et al.  Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .

[36]  P. B. Radha,et al.  High-areal-density fuel assembly in direct-drive cryogenic implosions. , 2008, Physical review letters.

[37]  L. Perkins,et al.  Initial experiments on the shock-ignition inertial confinement fusion concept , 2008 .

[38]  P. B. Radha,et al.  The role of fast-electron preheating in low-adiabat cryogenic implosions on OMEGA , 2008 .

[39]  J. A. Marozas,et al.  Preparing for Polar Drive at the National Ignition Facility , 2010 .