Progress in direct-drive inertial confinement fusion
暂无分享,去创建一个
S. Skupsky | B. Yaakobi | R. S. Craxton | P. W. McKenty | P. B. Radha | J. M. Soures | Robert L. McCrory | Riccardo Betti | F. J. Marshall | D. H. Edgell | V. Yu. Glebov | V. N. Goncharov | D. R. Harding | J. P. Knauer | T. C. Sangster | F. H. Séguin | W. Seka | C. Stoeckl | R. D. Petrasso | D. D. Meyerhofer | J. Knauer | D. Meyerhofer | J. Frenje | R. Petrasso | F. Séguin | R. Betti | Chikang Li | R. Craxton | V. Goncharov | D. Harding | R. Mccrory | P. McKenty | R. Short | S. Skupsky | J. Delettrez | W. Seka | J. Soures | C. Stoeckl | B. Yaakobi | F. Marshall | V. Glebov | S. Regan | D. Shvarts | D. Jacobs-Perkins | V. Smalyuk | D. Edgell | Dov Shvarts | J. A. Delettrez | R. W. Short | D. Jacobs-Perkins | Sean Regan | Vladimir Smalyuk | Johan Frenje | Chikang Li
[1] J. Lawson. SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .
[2] J. Nuckolls,et al. Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.
[3] Robert L. McCrory,et al. Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .
[4] Albert Simon,et al. On the inhomogeneous two‐plasmon instability , 1983 .
[5] Epstein,et al. Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.
[6] D. K. Bradley,et al. Laser-driven implosion of thermonuclear fuel to 20 to 40 g cm–3 , 1988, Nature.
[7] W. Kruer,et al. The Physics of Laser Plasma Interactions , 2019 .
[8] Samuel A. Letzring,et al. Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .
[9] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[10] Y. Lin,et al. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.
[11] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[12] J. Lindl,et al. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .
[13] S. Skupsky,et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .
[14] Chihiro Yamanaka,et al. Inertial confinement fusion: The quest for ignition and energy gain using indirect drive , 1999 .
[15] John Lindl,et al. A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .
[16] R. Town,et al. Analysis of a direct-drive ignition capsule designed for the National Ignition Facility , 2001 .
[17] William J. Hogan,et al. The National Ignition Facility , 2001 .
[18] P. B. Radha,et al. Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at OMEGA , 2002 .
[19] B. G. Logan,et al. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme , 2003 .
[20] S. Skupsky,et al. Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket , 2003 .
[21] J. D. Kilkenny,et al. Polar direct drive on the National Ignition Facility , 2004 .
[22] V. A. Smalyuk,et al. Direct-drive, cryogenic target implosions on OMEGA , 2004 .
[23] J. Meyer-ter-Vehn,et al. Inertial confinement by spherical implosion , 2004 .
[24] Stefano Atzeni,et al. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .
[25] J. Knauer,et al. Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method , 2005 .
[26] J. D. Salmonson,et al. Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .
[27] Edward I. Moses,et al. The national ignition facility: path to ignition in the laboratory , 2006 .
[28] S. Skupsky,et al. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .
[29] P. Baclet,et al. The Cryogenic Target for Ignition on the LMJ: Useful Tools to Achieve Nominal Temperature and Roughness Conditions of the DT Solid Layer , 2006 .
[30] P. B. Radha,et al. High-rhoR implosions for fast-ignition fuel assembly. , 2007, Physical review letters.
[31] L. Perkins,et al. Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.
[32] V. Goncharov,et al. Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .
[33] Michael H. Key,et al. Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .
[34] P. B. Radha,et al. Cryogenic target-implosion experiments on OMEGA , 2008 .
[35] R. S. Craxton,et al. Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .
[36] P. B. Radha,et al. High-areal-density fuel assembly in direct-drive cryogenic implosions. , 2008, Physical review letters.
[37] L. Perkins,et al. Initial experiments on the shock-ignition inertial confinement fusion concept , 2008 .
[38] P. B. Radha,et al. The role of fast-electron preheating in low-adiabat cryogenic implosions on OMEGA , 2008 .
[39] J. A. Marozas,et al. Preparing for Polar Drive at the National Ignition Facility , 2010 .