Quadratic finite element approximation of the Signorini problem

Applying high order finite elements to unilateral contact variational inequalities may provide more accurate computed solutions, compared with linear finite elements. Up to now, there was no significant progress in the mathematical study of their performances. The main question is involved With the modeling of the nonpenetration Signorini condition on the discrete solution along the contact region. In this work we describe two nonconforming quadratic finite element approximations of the Poisson-Signorini problem. responding to the crucial practical concern of easy implementation, and we present the numerical analysis of their efficiency. By means of Falk's Lemma we prove optimal and quasi-optimal convergence rates according to the regularity of the exact solution.

[1]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[6]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[7]  F. Ben NUMERICAL SIMULATION OF SOME VARIATIONAL INEQUALITIES ARISEN FROM UNILATERAL CONTACT PROBLEMS BY THE FINITE ELEMENT METHODS , 2000 .

[8]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[9]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[10]  Susanne C. Brenner,et al.  SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .

[11]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[12]  Z. Zhong Finite Element Procedures for Contact-Impact Problems , 1993 .

[13]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[14]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[15]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[16]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[17]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[18]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[21]  R. E. White,et al.  Parallel numerical solution of variational inequalities , 1994 .

[22]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .