A tuning parameter free test for properties of space–time covariance functions

Abstract We propose a new nonparametric test to test for symmetry and separability of space–time covariance functions. Unlike the existing nonparametric tests, our test has the attractive convenience of being free of choosing any user-chosen number or smoothing parameter. The asymptotic null distributions of the test statistics are free of nuisance parameters and the critical values have been tabulated in the literature. From a practical point of view, our test is easy to implement and can be readily used by the practitioner. A Monte-Carlo experiment and real data analysis illustrate the finite sample performance of the new test.

[1]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[2]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[3]  Peter J. Brockwell,et al.  An asymptotic test for separability of a spatial autoregressive model , 1995 .

[4]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[5]  M. Genton,et al.  A likelihood ratio test for separability of covariances , 2006 .

[6]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[7]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[8]  Nicholas I. Fisher,et al.  On the Nonparametric Estimation of Covariance Functions , 1994 .

[9]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[10]  M. Fuentes Testing for separability of spatial–temporal covariance functions , 2006 .

[11]  Bo Li,et al.  Testing the covariance structure of multivariate random fields , 2008 .

[12]  Y. Matsuda,et al.  On testing for separable correlations of multivariate time series , 2004 .

[13]  J. Davidson Stochastic Limit Theory , 1994 .

[14]  Michael Sherman,et al.  A Nonparametric Assessment of Properties of Space–Time Covariance Functions , 2007 .

[15]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[16]  Chung-Ming Kuan,et al.  Robust M Tests Without Consistent Estimation of the Asymptotic Covariance Matrix , 2006 .

[17]  Montserrat Fuentes,et al.  New classes of asymmetric spatial-temporal covariance Models , 2006 .

[18]  R. J. Martin,et al.  Testing axial symmetry and separability of lattice processes , 2005 .

[19]  Dale L. Zimmerman,et al.  Testing for directional symmetry in spatial dependence using the periodogram , 2005 .

[20]  Yongtao Guan,et al.  A Nonparametric Test for Spatial Isotropy Using Subsampling , 2004 .

[21]  Ignacio N. Lobato Testing That a Dependent Process Is Uncorrelated , 2001 .

[22]  Marc G. Genton,et al.  Testing for separability of space–time covariances , 2005 .

[23]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[24]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[25]  Testing Lack of Symmetry in Spatial-Temporal Processes. , 2008, Journal of statistical planning and inference.

[26]  Mikyoung Jun,et al.  An Approach to Producing Space–Time Covariance Functions on Spheres , 2007, Technometrics.

[27]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[28]  X. Shao,et al.  Confidence intervals for spectral mean and ratio statistics , 2009 .

[29]  M. Stein Space–Time Covariance Functions , 2005 .