Exergoeconomic optimization of a new four-step magnesium–chlorine cycle

[1]  I. Dincer,et al.  Modeling of a new four-step magnesium–chlorine cycle with dry HCl capture for more efficient hydrogen production , 2016 .

[2]  I. Dincer,et al.  Comparative performance assessment of three configurations of magnesium–chlorine cycle , 2016 .

[3]  Ibrahim Dincer,et al.  Thermodynamic and environmental impact assessment of steam methane reforming and magnesium–chlorine cycle‐based multigeneration systems , 2015 .

[4]  Ibrahim Dincer,et al.  Comparative cost evaluation of nuclear hydrogen production methods with the Hydrogen Economy Evaluation Program (HEEP) , 2015 .

[5]  Pooya Soltantabar Annual Energy Outlook , 2015 .

[6]  Hasan Ozcan,et al.  Experimental and theoretical investigations of magnesium-chlorine cycle and its integrated systems , 2015 .

[7]  Ibrahim Dincer,et al.  Energy and exergy analyses of a solar driven Mg–Cl hybrid thermochemical cycle for co-production of power and hydrogen , 2014 .

[8]  I. Dincer,et al.  Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production , 2014 .

[9]  A. Ozbilen Development, analysis and life cycle assessment of integrated systems for hydrogen production based on the copper-chlorine (Cu-Cl) cycle , 2013 .

[10]  Ibrahim Dincer,et al.  Hydrogen Production from Nuclear Energy , 2013 .

[11]  I. Dincer,et al.  Sustainable hydrogen production options and the role of IAHE , 2012 .

[12]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[13]  Ryutaro Hino,et al.  Nuclear hydrogen production handbook , 2011 .

[14]  Michele A. Lewis,et al.  The evaluation of alternative thermochemical cycles – Part II: The down-selection process , 2009 .

[15]  Michele A. Lewis,et al.  Evaluation of alternative thermochemical cycles - Part I the methodology. , 2009 .

[16]  M. Gorensek,et al.  Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor , 2009 .

[17]  Mujid S. Kazimi,et al.  Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Generation , 2007 .

[18]  Ibrahim Dincer,et al.  Exergy: Energy, Environment and Sustainable Development , 2007 .

[19]  Andrea Lazzaretto,et al.  SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems , 2006 .

[20]  B. Yildiz,et al.  US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550°C , 2006 .

[21]  R. Harris,et al.  MgOHCl thermal decomposition kinetics , 2005 .

[22]  M. Simpson,et al.  A hybrid thermochemical-electrolytic process for hydrogen production based on the Reverse Deacon Reaction. , 2006 .

[23]  William M. Vatavuk,et al.  Updating the CE Plant Cost Index , 2002 .

[24]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[25]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[26]  George Tsatsaronis,et al.  Exergy-aided cost minimization , 1997 .

[27]  F. Barbir,et al.  Hydrogen: the wonder fuel , 1992 .