Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis

[1]  H. Liu,et al.  Macrophages with Different Polarization Phenotypes Influence Cementoblast Mineralization through Exosomes , 2022, Stem cells international.

[2]  Dingming Huang,et al.  Macrophages in periapical lesions: Potential roles and future directions , 2022, Frontiers in Immunology.

[3]  K. Yiu,et al.  Role of Cardiomyocyte-Derived Exosomal MicroRNA-146a-5p in Macrophage Polarization and Activation , 2022, Disease markers.

[4]  S. Ergün,et al.  Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis , 2022, Cell Death & Disease.

[5]  L. Yin,et al.  Anemoside A3 activates TLR4-dependent M1-phenotype macrophage polarization to represses breast tumor growth and angiogenesis. , 2021, Toxicology and applied pharmacology.

[6]  Mao Chen,et al.  Activating transcription factor 4 regulates angiogenesis under lipid overload via methionine adenosyltransferase 2A‐mediated endothelial epigenetic alteration , 2021, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  Qian Wang,et al.  Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution , 2021, Bone Research.

[8]  Y. E. Chen,et al.  Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb , 2020, Stem Cell Research & Therapy.

[9]  M. Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[10]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[11]  B. Mallard,et al.  Transcriptomic Profiles of Monocyte-Derived Macrophages in Response to Escherichia coli is Associated with the Host Genetics , 2020, Scientific Reports.

[12]  A. Qian,et al.  Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells , 2020, International journal of molecular sciences.

[13]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[14]  E. M. O’Brien,et al.  Sequential drug delivery to modulate macrophage behavior and enhance implant integration. , 2019, Advanced drug delivery reviews.

[15]  M. Gale,et al.  RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection , 2019, Nature Communications.

[16]  R. Gruber Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. , 2019, Journal of clinical periodontology.

[17]  Monika S. Kowalczyk,et al.  A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia , 2019, Cell.

[18]  H. Takayanagi,et al.  Osteoimmunology: evolving concepts in bone–immune interactions in health and disease , 2019, Nature Reviews Immunology.

[19]  S. Tsitlakidis,et al.  Pooling of Patient-Derived Mesenchymal Stromal Cells Reduces Inter-Individual Confounder-Associated Variation without Negative Impact on Cell Viability, Proliferation and Osteogenic Differentiation , 2019, Cells.

[20]  R. Satija,et al.  The bone marrow microenvironment at single-cell resolution , 2019, Nature.

[21]  Song Wang,et al.  Osteogenic and angiogenic characterization of mandible and femur osteoblasts , 2019, Journal of Molecular Histology.

[22]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[23]  E. Boerwinkle,et al.  CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis , 2018, The Journal of clinical investigation.

[24]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[25]  T. K. Hunt,et al.  Stimulating Fracture Healing in Ischemic Environments: Does Oxygen Direct Stem Cell Fate during Fracture Healing? , 2017, Front. Cell Dev. Biol..

[26]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[27]  S. R. Bradbury,et al.  VEGF stimulates intramembranous bone formation during craniofacial skeletal development. , 2016, Matrix biology : journal of the International Society for Matrix Biology.

[28]  T. Pufe,et al.  Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes , 2014, International journal of molecular sciences.

[29]  L. Claesson‐Welsh,et al.  NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. , 2014, Developmental cell.

[30]  Hongli Jiao,et al.  ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  V. Rosen,et al.  Angiogenic factors in bone local environment. , 2013, Cytokine & growth factor reviews.

[32]  S. Aerts,et al.  i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules , 2012, Nucleic acids research.

[33]  S. Dry,et al.  Osteogenic Potential of Mandibular vs. Long-bone Marrow Stromal Cells , 2010, Journal of dental research.

[34]  P. Dell’Era,et al.  Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. , 2005, Cytokine & growth factor reviews.

[35]  K. Alitalo,et al.  The biology of vascular endothelial growth factors. , 2005, Cardiovascular research.

[36]  Bart Landuyt,et al.  Vascular Endothelial Growth Factor and Angiogenesis , 2004, Pharmacological Reviews.

[37]  Masahiro Saito,et al.  Alveolar Bone Marrow as a Cell Source for Regenerative Medicine: Differences Between Alveolar and Iliac Bone Marrow Stromal Cells , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[38]  R. Kauppinen,et al.  VEGF-D Is the Strongest Angiogenic and Lymphangiogenic Effector Among VEGFs Delivered Into Skeletal Muscle via Adenoviruses , 2003, Circulation research.

[39]  L. Lanyon,et al.  Mechanical Strain and Bone Cell Function: A Review , 2002, Osteoporosis International.

[40]  K. Alitalo,et al.  Vascular growth factors and lymphangiogenesis. , 2002, Physiological reviews.

[41]  Christopher J. Robinson,et al.  The splice variants of vascular endothelial growth factor (VEGF) and their receptors. , 2001, Journal of cell science.

[42]  A. McMahon,et al.  Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. , 2000, Development.

[43]  C. MacArthur,et al.  Receptor Specificity of the Fibroblast Growth Factor Family* , 1996, The Journal of Biological Chemistry.

[44]  K. Alitalo,et al.  Vascular endothelial growth factor B, a novel growth factor for endothelial cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Alitalo,et al.  FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. , 1992, Cancer research.

[46]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..