Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests - Application to the identification of a shear modified GTN model

The present paper deals with the identification of the parameters of a generalized GTN model and the characterization of ductile damage for a high carbon steel by both X-ray micro-tomography and "macroscopic" mechanical tests. First, in situ X-ray micro-tomography tensile tests are performed and the results are used for the modeling of ductile damage mechanisms (voids nucleation, growth and coalescence) using analytical formulations. Interrupted in situ SEM tensile test is also carried out to examine the microstructure evolution. The damage process during in situ X-ray micro-tomography tensile tests is the result of continuous nucleation of small voids and significant growth of large voids; whereas the coalescence takes place locally. In addition, tomography results combined with the results of macroscopic mechanical tests at different loading configurations are used to identify the Gurson-Tvergaard-Needleman model extended for shear loading by Xue (2008). It proved necessary to propose an improvement to account for the influence of the stress triaxiality level on the nucleation formulation of the GTN model. This new formulation is then identified via experimental tests. The results show that, with the parameters obtained from both microstructure measurements and macroscopic considerations, the modified GTN model can reproduce quite accurately the experimental results for different loading configurations.

[1]  D. Fabrègue,et al.  Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography , 2013 .

[2]  E. Maire,et al.  Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography , 2008 .

[3]  C. Landron Ductile damage characterization in Dual-Phase steels using X-ray tomography , 2011 .

[4]  M. Suéry,et al.  Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures , 2010 .

[5]  Yonggang Huang,et al.  Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields , 1991 .

[6]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear : Experiments , 2007 .

[7]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[8]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[9]  W. Brocks,et al.  On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening , 2003 .

[10]  O. Richmond,et al.  Tensile fracture and fractographic analysis of 1045 spheroidized steel under hydrostatic pressure , 1990 .

[11]  Olivier Bouaziz,et al.  Numerical investigation and experimental validation of physically based advanced GTN model for DP steels , 2013 .

[12]  Yonggang Huang,et al.  The modified Gurson model accounting for the void size effect , 2004 .

[13]  Pierre Montmitonnet,et al.  On the Development and Identification of Phenomenological Damage Models - Application to Industrial Wire Drawing and Rolling Processes , 2013 .

[14]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[15]  Trong-Son Cao Modeling ductile damage for complex loading paths , 2013 .

[16]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[17]  E. Maire,et al.  Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels , 2011 .

[18]  Thomas Massé,et al.  Study and optimization of high carbon steel flat wires , 2010 .

[19]  P. Bouchard,et al.  A detailed description of the Gurson–Tvergaard–Needleman model within a mixed velocity–pressure finite element formulation , 2013 .

[20]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[21]  L. Xue,et al.  Constitutive modeling of void shearing effect in ductile fracture of porous materials , 2008 .

[22]  J. Leblond,et al.  A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: Limit-analysis of some representative cell , 2012 .

[23]  M. Abbasi,et al.  Identification of GTN model parameters by application of response surface methodology , 2011 .

[24]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[25]  Olivier Bouaziz,et al.  A model for initiation and growth of damage in dualphase steels identified by X-ray micro-tomography , 2008 .

[26]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[27]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[28]  Pierre Montmitonnet,et al.  Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical–experimental analysis of fracture experiments conducted on a zirconium alloy , 2013 .

[29]  I. Barsoum,et al.  Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence , 2011 .

[30]  Li Fuguo,et al.  Forming Limit Stress Diagram Prediction of Aluminum Alloy 5052 Based on GTN Model Parameters Determined by In Situ Tensile Test , 2011 .

[31]  Jacques Besson,et al.  Anisotropic ductile fracture: Part II: theory , 2004 .

[32]  Arnaud Weck,et al.  Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials , 2008 .

[33]  O. Bouaziz,et al.  Numerical modeling of damage evolution of DP steels on the basis of X-ray tomography measurements , 2011 .

[34]  E. Maire,et al.  Ductile damage in aluminium alloy thin sheets: Correlation between micro-tomography observations and mechanical modeling , 2012 .

[35]  J. Leblond,et al.  Effect of void locking by inclusions upon the plastic behavior of porous ductile solids¿I: theoretical modeling and numerical study of void growth , 2004 .

[36]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[37]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[38]  Wolfgang Ludwig,et al.  Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests , 2007 .

[39]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[40]  P. Cloetens,et al.  Resolution effect on the study of ductile damage using synchrotron X-ray tomography , 2012 .

[41]  E. Maire,et al.  Damage characterization in Dual-Phase steels using X-ray tomography , 2011 .

[42]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[43]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[44]  M. Fu,et al.  The influence of size effect on the ductile fracture in micro-scaled plastic deformation , 2013 .