Self-Evolvability for Biosystems

The straightforwardness with which biosystems solve complex problems suggests adopting the strategies developed in nature to face evergrowing complexity for other systems.

[1]  Walter J. Freeman,et al.  Metastability, instability, and state transition in neocortex , 2005, Neural Networks.

[2]  Alfonso Jiménez-Sánchez,et al.  On the origin and evolution of the genetic code , 1995, Journal of Molecular Evolution.

[3]  G. L. Findley,et al.  Symmetry characteristics of the genetic code. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Kuhn,et al.  Diversified world: drive to life's origin?! , 2003, Angewandte Chemie.

[5]  Robert Kozma,et al.  Neurodynamics of cognition and consciousness , 2009, PerMIS.

[6]  David A Engstrøm,et al.  COORDINATION DYNAMICS OF THE COMPLEMENTARY NATURE. , 2008, Gestalt theory.

[7]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[8]  L Frappat,et al.  Prediction of Physical-Chemical Properties of Amino Acids from Genetic Code , 2002, Journal of biological physics.

[9]  Walter J. Freeman,et al.  Proposed Cortical “Shutter” Mechanism in Cinematographic Perception , 2007 .

[10]  Eugene V Koonin,et al.  Origin and evolution of the genetic code: The universal enigma , 2008, IUBMB life.

[11]  Nancey C. Murphy,et al.  Downward causation and the neurobiology of free will , 2009 .

[12]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[13]  Paul Lukowicz,et al.  Systems Aspects in Organic and Pervasive Computing - ARCS 2005, 18th International Conference on Architecture of Computing Systems, Innsbruck, Austria, March 14-17, 2005, Proceedings , 2005, ARCS.

[14]  P. Schuster A testable genotype-phenotype map: modeling evolution of RNA molecules , 2002 .

[15]  R. Solé,et al.  Information catastrophe in RNA viruses through replication thresholds. , 2006, Journal of theoretical biology.

[16]  T. Wilhelm,et al.  A New Classification Scheme of the Genetic Code , 2004, Journal of Molecular Evolution.

[17]  Canonical self-affine tilings by iterated function systems , 2006, math/0606111.

[18]  Frank J. Bruggeman,et al.  Systems Biology: Philosophical Foundations , 2007 .

[19]  Roy Sterritt,et al.  Autonomic computing - panacea or poppycock? , 2005, 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS'05).

[20]  Theoretical prevision of physical chemical properties of amino acids from genetic code , 2000, physics/0007034.

[21]  A. Moretti,et al.  The geometry of logical opposition , 2009 .

[22]  J. Kelso,et al.  Toward a Complementary Neuroscience: Metastable Coordination Dynamics of the Brain , 2009 .

[23]  Wolfgang Trumler,et al.  Towards an Organic Middleware for the Smart Doorplate Project , 2004, GI Jahrestagung.

[24]  Radu Calinescu,et al.  CADS*: Computer-Aided Development of Self-* Systems , 2009, FASE.

[25]  Z. Benyó,et al.  Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[26]  B. Drossel Biological evolution and statistical physics , 2001, cond-mat/0101409.

[27]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[28]  J. Jungck,et al.  Group graph of the genetic code. , 1979, The Journal of heredity.

[29]  S. Grossberg The Complementary Brain: A Unifying View of Brain Specialization and Modularity , 1998 .

[30]  J. Onuchic,et al.  Navigating the folding routes , 1995, Science.

[31]  Bernhard Bauer,et al.  AOSE and Organic Computing - How Can They Benefit from Each Other? Position Paper , 2005, ER.

[32]  Donald Favareau The Physics and Metaphysics of Biosemiotics , 2009 .

[33]  Guy Sella,et al.  No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  M. Jiménez-Montaño,et al.  Protein evolution drives the evolution of the genetic code and vice versa. , 1999, Bio Systems.

[35]  J. Waser,et al.  On the origin of the genetic code , 1994, FEBS letters.

[36]  W. Taylor,et al.  The classification of amino acid conservation. , 1986, Journal of theoretical biology.

[37]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[38]  Jan-Hendrik S. Hofmeyr,et al.  The biochemical factory that autonomously fabricates itself: A systems biological view of the living cell , 2007 .

[39]  T Pöschel,et al.  The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro. , 2002, Bio Systems.

[40]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[41]  Bernhard Bauer,et al.  AOSE and Organic Computing - How Can They Benefit from Each Other? , 2005, AOIS.

[42]  Viruses: evolution, propagation, and defense. , 2009, Nutrition reviews.

[43]  Perdita Stevens,et al.  Modelling Recursive Calls with UML State Diagrams , 2003, FASE.

[44]  S. Kauffman At Home in the Universe: The Search for the Laws of Self-Organization and Complexity , 1995 .

[45]  S. Grossberg The complementary brain: unifying brain dynamics and modularity , 2000, Trends in Cognitive Sciences.

[46]  M. Eigen,et al.  Molecular quasi-species. , 1988 .

[47]  Thorsten Schöler,et al.  An Observer/Controller Architecture for Adaptive Reconfigurable Stacks , 2005, ARCS.

[48]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .