Learning deficits after lesions of dentate gyrus granule cells

[1]  G. Wooten,et al.  Potential mechanisms underlying the destruction of dentate gyrus granule cells by colchicine , 1982, Experimental Neurology.

[2]  S. Bayer,et al.  Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. , 1982, Science.

[3]  David S. Olton,et al.  A disconnection analysis of hippocampal function , 1982, Brain Research.

[4]  S. Zola-Morgan,et al.  Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  D. Olton,et al.  Neuroanatomical bases of spatial memory , 1980, Brain Research.

[6]  L. Jarrard Selective hippocampal lesions and behavior , 1980 .

[7]  D. Olton Inner and outer space: the neuroanatomical bases of spatially organized behaviors , 1979, Behavioral and Brain Sciences.

[8]  E. Rickert,et al.  Stimulus processing and stimulus selection in rats with hippocampal lesions. , 1979, Behavioral and neural biology.

[9]  P. Solomon Temporal versus spatial information processing theories of hippocampal function. , 1979, Psychological bulletin.

[10]  G. Handelmann,et al.  Hippocampus, space, and memory , 1979 .

[11]  G. Lynch,et al.  Activity of dentate granule cells during learning: Differentiation of perforant path input , 1979, Brain Research.

[12]  G. Lynch,et al.  Synaptically identified hippocampal slow potentials during behavior , 1979, Brain Research.

[13]  L. Jarrard,et al.  Selective hippocampal lesions: differential effects on performance by rats of a spatial task with preoperative versus postoperative training. , 1978, Journal of comparative and physiological psychology.

[14]  F. Gage,et al.  Hippocampal connections and spatial discrimination , 1978, Brain Research.

[15]  A. Black,et al.  Hippocampal function in avoidance learning and punishment. , 1977, Psychological bulletin.

[16]  J. Winson,et al.  Gating of neuronal transmission in the hippocampus: efficacy of transmission varies with behavioral state. , 1977, Science.

[17]  E. Fifková,et al.  Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area , 1977, Journal of neurocytology.

[18]  Gary Lynch,et al.  An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts , 1976, Brain Research.

[19]  G. Lynch,et al.  Long lasting changes in the spontaneous activity of hippocampal neurons following stimulation of the entorhinal cortex , 1976, Brain Research Bulletin.

[20]  R. Douglas,et al.  Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus , 1975, Brain Research.

[21]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[22]  G. Lynch,et al.  Postlesion Axonal Growth Produces Permanent Functional Connections , 1973, Science.

[23]  A. Cowey,et al.  Effects of dorsal and ventral hippocampal lesions on spontaneous alternation, learned alternation and probability learning in rats. , 1973, Brain research.

[24]  R. Douglas,et al.  The hippocampus and behavior. , 1967, Psychological bulletin.

[25]  P. Milner,et al.  Activity changes following partial hippocampal lesions in rats. , 1963, Journal of comparative and physiological psychology.

[26]  G. Buzsáki,et al.  Differential contribution of fimbria and fornix fibers to behavior. , 1980, Behavioral and neural biology.

[27]  F. H. Lopes da Silva,et al.  Physiology of the hippocampus and related structures. , 1978, Annual review of physiology.