Extracting Narrative Timelines as Temporal Dependency Structures

We propose a new approach to characterizing the timeline of a text: temporal dependency structures, where all the events of a narrative are linked via partial ordering relations like BEFORE, AFTER, OVERLAP and IDENTITY. We annotate a corpus of children's stories with temporal dependency trees, achieving agreement (Krippendorff's Alpha) of 0.856 on the event words, 0.822 on the links between events, and of 0.700 on the ordering relation labels. We compare two parsing models for temporal dependency structures, and show that a deterministic non-projective dependency parser outperforms a graph-based maximum spanning tree parser, achieving labeled attachment accuracy of 0.647 and labeled tree edit distance of 0.596. Our analysis of the dependency parser errors gives some insights into future research directions.

[1]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[2]  Jerry R. Hobbs,et al.  Learning Event Durations from Event Descriptions , 2006, ACL.

[3]  Koby Crammer,et al.  Ultraconservative Online Algorithms for Multiclass Problems , 2001, J. Mach. Learn. Res..

[4]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[5]  Michael A. Covington,et al.  A Fundamental Algorithm for Dependency Parsing , 2004 .

[6]  James F. Allen,et al.  TRIPS and TRIOS System for TempEval-2: Extracting Temporal Information from Text , 2010, *SEMEVAL.

[7]  Heng Ji,et al.  Predicting Unknown Time Arguments based on Cross-Event Propagation , 2009, ACL.

[8]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[9]  Branimir Boguraev,et al.  TimeBank-Driven TimeML Analysis , 2005, Annotating, Extracting and Reasoning about Time and Events.

[10]  James H. Martin,et al.  Finding Temporal Structure in Text: Machine Learning of Syntactic Temporal Relations , 2007, Int. J. Semantic Comput..

[11]  Yuji Matsumoto,et al.  NAIST.Japan: Temporal Relation Identification Using Dependency Parsed Tree , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[12]  Leonidas Georgiadis Arborescence optimization problems solvable by Edmonds' algorithm , 2003, Theor. Comput. Sci..

[13]  Heng Ji,et al.  CUNY BLENDER TAC-KBP2011 Temporal Slot Filling System Description , 2011, TAC.

[14]  Yuji Matsumoto,et al.  Jointly Identifying Temporal Relations with Markov Logic , 2009, ACL.

[15]  Maya Hickmann,et al.  Children's Discourse: Person, Space and Time across Languages. Cambridge Studies in Linguistics. , 2002 .

[16]  Joakim Nivre,et al.  Algorithms for Deterministic Incremental Dependency Parsing , 2008, CL.

[17]  Klaus Krippendorff,et al.  Answering the Call for a Standard Reliability Measure for Coding Data , 2007 .

[18]  Fernando Pereira,et al.  Non-Projective Dependency Parsing using Spanning Tree Algorithms , 2005, HLT.

[19]  James Pustejovsky,et al.  Annotating, Extracting and Reasoning About Time and Events , 2005, Annotating, Extracting and Reasoning about Time and Events.

[20]  Nathanael Chambers,et al.  Using Query Patterns to Learn the Duration of Events , 2011, IWCS.

[21]  Philip N. Johnson-Laird,et al.  Mental Models in Cognitive Science , 1980, Cogn. Sci..

[22]  William F. Brewer,et al.  Stories Are to Entertain: A Structural-Affect Theory of Stories. Technical Report No. 265. , 1982 .

[23]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[24]  James H. Martin,et al.  CU-TMP: Temporal Relation Classification Using Syntactic and Semantic Features , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[25]  Mirella Lapata,et al.  Learning to Tell Tales: A Data-driven Approach to Story Generation , 2009, ACL.

[26]  Marie-Francine Moens,et al.  Annotating Story Timelines as Temporal Dependency Structures , 2012, LREC.

[27]  Evelina Andersson,et al.  Evaluating Dependency Parsing: Robust and Heuristics-Free Cross-Annotation Evaluation , 2011, EMNLP.

[28]  Estela Saquete Boró,et al.  TIPSem (English and Spanish): Evaluating CRFs and Semantic Roles in TempEval-2 , 2010, *SEMEVAL.

[29]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[30]  Heng Ji,et al.  An Evaluation Framework for Aggregated Temporal Information Extraction , 2011 .

[31]  James Pustejovsky,et al.  SemEval-2007 Task 15: TempEval Temporal Relation Identification , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[32]  Regina Barzilay,et al.  Inducing Temporal Graphs , 2006, EMNLP.

[33]  Nathanael Chambers,et al.  Jointly Combining Implicit Constraints Improves Temporal Ordering , 2008, EMNLP.

[34]  James Pustejovsky,et al.  Increasing Informativeness in Temporal Annotation , 2011, Linguistic Annotation Workshop.