Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below.

The degradation of intermediate temperature solid oxide fuel cell (ITSOFC) cathodes has been identified as a major issue limiting the development of ITSOFCs as high efficiency energy conversion devices. In this work, the effect of Cr poisoning on (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ (LSCF6428), a particularly promising ITSOFC cathode material, was investigated on symmetrical cells using electrochemical impedance spectroscopy and multiscale structural/chemical analysis by advanced electron and ion microscopy. The systematic combination of bulk and high-resolution analysis on the same cells allows, for the first time, direct correlation of Cr induced performance degradation with subtle and localized structural/chemical changes of the cathode down to the atomic scale. Up to 2 orders of magnitude reduction in conductivity, oxygen surface exchange rate, and diffusivity were observed in Cr poisoned LSCF6428 samples. These effects are associated with the formation of nanometer size SrCrO4; grain boundary segregation of Cr; enhanced B-site element exsolution (both Fe and Co); and reduction in the Fe valence, the latter two being related to Cr substitution in LSCF. The finding that significant degradation of the cathode happens before obvious microscale change points to new critical SOFC degradation mechanisms effective at the nanometer scale and below.

[1]  Nakamura,et al.  Doping-induced changes in the electronic structure of LaxSr1-xTiO3: Limitation of the one-electron rigid-band model and the Hubbard model. , 1992, Physical review. B, Condensed matter.

[2]  A. Haghiri-Gosnet,et al.  Electron energy-loss spectroscopy study of a (LaMnO3)8(SrMnO3)4 heterostructure , 2001 .

[3]  David S. McPhail,et al.  Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials , 2014 .

[4]  Liming Yang,et al.  Perovskite chromate doped with titanium for direct carbon dioxide electrolysis , 2015 .

[5]  G. Botton,et al.  High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x = 0 to 0.33 , 2005 .

[6]  Caroline Calderone,et al.  Combined Cr and S poisoning in solid oxide fuel cell cathodes , 2012 .

[7]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[8]  Nigel P. Brandon,et al.  Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8 O 3 Cathodes for Intermediate-Temperature SOFCs , 2004 .

[9]  A. Wattiaux,et al.  Mixed valence states of Cr and Fe in La1−xSrxFe0.8Cr0.2O3−y , 2010 .

[10]  K. Sasaki,et al.  Influence of cathode polarization on the chromium deposition near the cathode/electrolyte interface of SOFC , 2014 .

[11]  K. Wiik,et al.  Cation diffusion in La1−xSrxFeO3−δ, x = 0 and 0.1 measured by SIMS , 2007 .

[12]  Zhenguo Yang,et al.  SOFC performance with Fe-Cr-Mn alloy interconnect , 2005 .

[13]  W. Sitte,et al.  Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600 °C in dry and humid atmospheres , 2011 .

[14]  M. Islam,et al.  Defect chemistry and surface properties of LaCoO3 , 2000 .

[15]  Y. Matsuzaki,et al.  Prevention of SOFC cathode degradation in contact with Cr-containing alloy , 2004 .

[16]  L. Singheiser,et al.  Chromium Poisoning of Perovskite Cathodes by the ODS Alloy Cr5Fe1Y2O3 and the High Chromium Ferritic Steel Crofer22APU , 2006 .

[17]  H. Tan,et al.  Oxidation state and chemical shift investigation in transition metal oxides by EELS , 2012 .

[18]  J. Bassat,et al.  Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient , 2004 .

[19]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[20]  P. V. van Aken,et al.  Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy , 1998 .

[21]  Harumi Yokokawa,et al.  Thermodynamic considerations on Cr poisoning in SOFC cathodes , 2006 .

[22]  F. Tietz,et al.  On the Suitability of La0.60Sr0.40Co0.20Fe0.80O3 Cathode for the Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC) , 2004 .

[23]  Wen Chen,et al.  Microstructure and electrochemical properties of porous La2NiO4+δ electrode screen-printed on Ce0.8Sm0.2O1.9 electrolyte , 2010, Journal of Solid State Electrochemistry.

[24]  B. Yildiz,et al.  Degradation Mechanism in La0.8Sr0.2CoO3 as Contact Layer on the Solid Oxide Electrolysis Cell Anode , 2010 .

[25]  A. Jacobson,et al.  Oxygen Transport Kinetics in SrFeO3 − δ , La0.5Sr0.5FeO3 − δ , and La0.2Sr0.8Cr0.2Fe0.8 O 3 − δ Measured by Electrical Conductivity Relaxation , 2005 .

[26]  J. Drennan,et al.  Surface Segregation and Chromium Deposition and Poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells , 2013 .

[27]  X. F. Zhang,et al.  Thin film SOFCs with cobalt-infiltrated cathodes , 2005 .

[28]  J. Kilner,et al.  Effect of Chromium on La0.6Sr0.4Co0.2Fe0.8O3-δ Solid Oxide Fuel Cell Cathodes , 2013 .

[29]  Uchida,et al.  Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy. , 1992, Physical review. B, Condensed matter.

[30]  Michael C. Tucker,et al.  A fundamental study of chromium deposition on solid oxide fuel cell cathode materials , 2006 .

[31]  M. Yashima,et al.  Neutron diffraction study of the perovskite-type lanthanum cobaltite La0.6Sr0.4Co0.8Fe0.2O3 − δ at 1260 °C and 394 °C , 2008 .

[32]  N. Browning,et al.  Atomic Scale Characterization of Vacancy Ordering in Oxygen Conducting Membranes , 2002, Microscopy and Microanalysis.

[33]  Z. Lü,et al.  Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3 − δ electrodes of solid oxide cells under open circuit condition , 2015 .

[34]  L. A. Chick,et al.  Effects of Chrome Contamination on the Performance of La0.6Sr0.4Co0.2Fe0.8O3 Cathode Used in Solid Oxide Fuel Cells , 2006 .

[35]  M. Katsuki High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant , 2003 .

[36]  Y. Matsuzaki,et al.  Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects , 2004 .

[37]  San Ping Jiang,et al.  A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells , 2002 .

[38]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[39]  S. Jiang,et al.  Deposition of Cr Species at ( La , Sr ) ( Co , Fe ) O3 Cathodes of Solid Oxide Fuel Cells , 2006 .

[40]  A. Feldhoff,et al.  Investigation of carbonates in oxygen-transporting membrane ceramics , 2015 .

[41]  M. Rieu,et al.  Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells , 2011 .

[42]  L. Singheiser,et al.  Mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ membranes , 2009 .

[43]  A. Atkinson,et al.  Oxygen diffusion and surface exchange in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6) , 2004 .

[44]  John A. Kilner,et al.  Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ , 1999 .

[45]  B. S. Barros,et al.  Synthesis, structure and electrochemical performance of cobaltite‐based composite cathodes for IT‐SOFC , 2012 .

[46]  P. Ried,et al.  Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-d and Ba0.5Sr0.5Co0.8Fe0.2O3-d as Cathode Materials for the Application in Intermediate Temperature Fuel Cells , 2007 .

[47]  Wei Liu,et al.  Conductivity of SrCrO4 and Its Influence on Deterioration of Electrochemical Performance of Cathodes in Solid Oxide Fuel Cells , 2014 .

[48]  A. Feldhoff,et al.  Local Charge Disproportion in a High-Performance Perovskite , 2009 .

[49]  B. Boukamp,et al.  Cr-poisoning of a LaNi0.6Fe0.4O3 cathode under current load , 2012 .

[50]  Shao-Long Wang,et al.  A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells , 2014 .

[51]  E. Wachsman,et al.  Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials. , 2013, Physical chemistry chemical physics : PCCP.

[52]  J. Kilner,et al.  Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation , 2000 .

[53]  J. Bowen,et al.  Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation , 2015 .

[54]  T. Itoh,et al.  Oxygen partial pressure dependence of in situ X-ray absorption spectroscopy at the Co and Fe K edges for (La0.6Sr0.4)(Co0.2Fe0.8)O3−δ , 2012 .

[55]  N. Ni,et al.  Combined Cr and Mo poisoning of (La,Sr)(Co,Fe)O3 − δ solid oxide fuel cell cathodes at the nanoscale , 2016 .

[56]  B. Boukamp,et al.  Oxygen transport in La0.6Sr0.4Co1−yFeyO3−δ , 2004 .

[57]  A. T. Aldred,et al.  Localized level hopping transport in La(Sr)CrO/sub 3/ , 1979 .

[58]  Y. Matsuzaki,et al.  Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes , 2001 .

[59]  Stephen J. Skinner,et al.  Materials development for intermediate-temperature solid oxide electrochemical devices , 2012, Journal of Materials Science.

[60]  T. Jacobsen,et al.  Impedance of porous IT-SOFC LSCF:CGO composite cathodes , 2011 .

[61]  K. Lu,et al.  Effect of stoichiometry on (La0.6Sr0.4)xCo0.2Fe0.8O3 cathode evolution in solid oxide fuel cells , 2014 .

[62]  M. M. Nasrallah,et al.  Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .

[63]  S. Badwal,et al.  Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells , 1997 .

[64]  M. Rieu,et al.  Characterization and Comparison of Different Cathode Materials for SC‐SOFC: LSM, BSCF, SSC, and LSCF , 2012 .

[65]  D. Peck,et al.  Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes , 1996 .

[66]  B. Steele,et al.  The structure of and reaction of A-site deficient La0.6Sr0.4 − xCo0.2Fe0.8O3 − δ perovskites , 1996 .