CHAPTER 33 – Monotone Set Functions-Based Integrals

[1]  G. Vitali,et al.  Sulla definizione di integrale delle funzioni di una variabile , 1925 .

[2]  G. Choquet Theory of capacities , 1954 .

[3]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[4]  N. Shilkret Maxitive measure and integration , 1971 .

[5]  Maurice Sion,et al.  A Theory of Semigroup Valued Measures , 1973 .

[6]  G. Letta,et al.  Une notion générale de convergence faible pour des fonctions croissantes d'ensemble , 1977 .

[7]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[8]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[9]  About $\sigma $-additive and $\sigma $-maxitive measures , 1982 .

[10]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[11]  Liu Dsosu,et al.  Fuzzy random measure and its extension theorem , 1983 .

[12]  S. Weber ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .

[13]  Integration with respect to a $oplus$-measure , 1986 .

[14]  S. Weber Two integrals and some modified versions-critical remarks , 1986 .

[15]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[16]  D. Schmeidler Integral representation without additivity , 1986 .

[17]  M. Sugeno,et al.  Fuzzy measure analysis of public attitude towards the use of nuclear energy , 1986 .

[18]  M. Sugeno,et al.  Pseudo-additive measures and integrals , 1987 .

[19]  Hideo Tanaka,et al.  Fuzzy integrals based on pseudo-additions and multiplications , 1988 .

[20]  Michio Sugeno,et al.  Fuzzy t -conorm integral with respect to fuzzy measures: generalization of Sugeno integral and choquet integral , 1991 .

[21]  Michio Sugeno,et al.  A study on subjective evaluations of printed color images , 1991, Int. J. Approx. Reason..

[22]  M. T. Lamata,et al.  A unified approach to define fuzzy integrals , 1991 .

[23]  M. Sugeno,et al.  Fuzzy measure of fuzzy events defined by fuzzy integrals , 1992 .

[24]  Luis M. de Campos,et al.  Characterization and comparison of Sugeno and Choquet integrals , 1992 .

[25]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[26]  M. Sugeno,et al.  Some quantities represented by the Choquet integral , 1993 .

[27]  D. Denneberg Non-additive measure and integral , 1994 .

[28]  R. Mesiar Choquet-like Integrals , 1995 .

[29]  Michio Sugeno,et al.  A new approach to time series modeling with fuzzy measures and the Choquet integral , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[30]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[31]  Radko Mesiar,et al.  Pan-operations structure , 1995, Fuzzy Sets Syst..

[32]  E. Pap Null-Additive Set Functions , 1995 .

[33]  Pietro Benvenuti,et al.  General theory of the fuzzy integral , 1996 .

[34]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[35]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[36]  Haruki Imaoka,et al.  On a Subjective Evaluation Model by a Generalized Fuzzy Integral , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[37]  R. Nelsen An Introduction to Copulas , 1998 .

[38]  Bernard De Baets,et al.  Uninorms: The known classes , 1998 .

[39]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[40]  Radko Mesiar,et al.  A geometric approach to aggregation , 2001, EUSFLAT Conf..

[41]  Doretta Vivona,et al.  The Cauchy equation on I-semigroups , 2002 .

[42]  E. Pap CHAPTER 35 – Pseudo-Additive Measures and Their Applications , 2002 .