Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets

We consider a class of generalized Nash equilibrium problems with quadratic cost functions and common linear constraints for all players. Further we focus on the case where every player has a single strategy variable within a bounded set. For this problem class we present an algorithm that is able to compute all solutions and that terminates finitely. Our method is based on a representation of the solution set as a finite union of polyhedral sets using sign conditions for the derivatives of the cost and constraint functions. The effectiveness of the algorithm is shown in various examples from literature.

[1]  L. Altangerel,et al.  Perturbation approach to generalized Nash equilibrium problems with shared constraints , 2012, Optim. Lett..

[2]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[3]  Jong-Shi Pang,et al.  Nonconvex Games with Side Constraints , 2011, SIAM J. Optim..

[4]  Uday V. Shanbhag,et al.  Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis , 2013, Optim. Methods Softw..

[5]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[6]  Francisco Facchinei,et al.  On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..

[7]  Yonina C. Eldar,et al.  Convex Optimization in Signal Processing and Communications , 2009 .

[8]  Christian Kanzow,et al.  Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems , 2011, Comput. Optim. Appl..

[9]  Francisco Facchinei,et al.  On the computation of all solutions of jointly convex generalized Nash equilibrium problems , 2011, Optim. Lett..

[10]  Axel Dreves Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems , 2011 .

[11]  Francisco Facchinei,et al.  Nash equilibria: the variational approach , 2010, Convex Optimization in Signal Processing and Communications.

[12]  Francisco Facchinei,et al.  A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application , 2014, Comput. Optim. Appl..

[13]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[14]  Masao Fukushima,et al.  Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..

[15]  Masao Fukushima,et al.  Gap Function Approach to the Generalized Nash Equilibrium Problem , 2010 .

[16]  Masao Fukushima,et al.  Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints , 2011, Comput. Optim. Appl..

[17]  Francisco Facchinei,et al.  Exact penalty functions for generalized Nash problems , 2006 .

[18]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[19]  Jong-Shi Pang,et al.  On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method , 2013, Math. Program..

[20]  Jacek B. Krawczyk,et al.  Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems , 2007, Comput. Manag. Sci..

[21]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[22]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[23]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[24]  Gang Qian,et al.  An improved two-step method for solving generalized Nash equilibrium problems , 2012, Eur. J. Oper. Res..

[25]  Masao Fukushima,et al.  Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation , 2012, Math. Program..

[26]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[27]  Oliver Stein,et al.  Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems , 2012, J. Glob. Optim..

[28]  Alexey F. Izmailov,et al.  On error bounds and Newton-type methods for generalized Nash equilibrium problems , 2014, Comput. Optim. Appl..

[29]  Masao Fukushima,et al.  A globalized Newton method for the computation of normalized Nash equilibria , 2013, J. Glob. Optim..