THE CHANGING FRACTIONS OF TYPE IA SUPERNOVA NUV–OPTICAL SUBCLASSES WITH REDSHIFT

UV and optical photometry of Type Ia supernovae (SNe Ia) at low redshift have revealed the existence of two distinct color groups, NUV-red and NUV-blue events. The color curves differ primarily by an offset, with the NUV-blue u- color curves bluer than the NUV-red curves by 0.4 mag. For a sample of 23 low-z SNe~Ia observed with Swift, the NUV-red group dominates by a ratio of 2:1. We compare rest-frame UV/optical spectrophotometry of intermediate and high-z SNe Ia with UVOT photometry and HST spectrophotometry of low-z SNe Ia, finding that the same two color groups exist at higher-z, but with the NUV-blue events as the dominant group. Within each red/blue group, we do not detect any offset in color for different redshifts, providing insight into how SN~Ia UV emission evolves with redshift. Through spectral comparisons of SNe~Ia with similar peak widths and phase, we explore the wavelength range that produces the UV/OPT color differences. We show that the ejecta velocity of NUV-red SNe is larger than that of NUV-blue objects by roughly 12% on average. This velocity difference can explain some of the UV/optical color difference, but differences in the strengths of spectral features seen in meanspectra require additional explanation. Because of the different b-v colors for these groups, NUV-red SNe will have their extinction underestimated using common techniques. This, in turn, leads to under-estimation of the optical luminosity of the NUV-blue SNe~Ia, in particular, for the high-redshift cosmological sample. Not accounting for this effect should thus produce a distance bias that increases with redshift and could significantly bias measurements of cosmological parameters.

[1]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[2]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[3]  Mansi M. Kasliwal,et al.  HUBBLE SPACE TELESCOPE STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION , 2010, 1010.2211.

[4]  P. Brown,et al.  GROUPING NORMAL TYPE Ia SUPERNOVAE BY UV TO OPTICAL COLOR DIFFERENCES , 2013, 1308.2703.

[5]  Caltech,et al.  THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS , 2008, 0811.1205.

[6]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[7]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[8]  M. Phillips,et al.  NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE AS OBSERVED WITH THE Swift UVOT , 2010, 1007.5279.

[9]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[10]  D. Rabinowitz,et al.  NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR , 2010, 1003.2217.

[11]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[12]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[13]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[14]  The UV/optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements , 2012, 1208.1267.

[15]  Adam A. Miller,et al.  Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc , 2010, 1003.2417.

[16]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[17]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[18]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[19]  A. Filippenko,et al.  Berkeley Supernova Ia Program – II. Initial analysis of spectra obtained near maximum brightness , 2012, 1202.2129.

[20]  J. Prieto,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOUS AND CARBON-RICH SUPERNOVA 2006GZ: A DOUBLE DEGENERATE MERGER? , 2022 .

[21]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[22]  R. Kirshner,et al.  SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA , 2009, 0912.0263.

[23]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[24]  R. Nichol,et al.  EVIDENCE FOR A CORRELATION BETWEEN THE Si ii λ4000 WIDTH AND TYPE Ia SUPERNOVA COLOR , 2010, 1012.4430.

[25]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[26]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[27]  R. Foley THE RELATION BETWEEN EJECTA VELOCITY, INTRINSIC COLOR, AND HOST-GALAXY MASS FOR HIGH-REDSHIFT TYPE Ia SUPERNOVAE , 2012, 1202.0003.

[28]  P. Brown,et al.  A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA , 2011, 1110.2538.

[29]  R. Ellis,et al.  Hubble Space Telescope studies of low‐redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends , 2012, 1205.7040.

[30]  M. Sullivan,et al.  THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS , 2009, 0901.2476.

[31]  P. Brown,et al.  ULTRAVIOLET OBSERVATIONS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVA CANDIDATES WITH SWIFT UVOT , 2014, 1404.0650.

[32]  S. E. Persson,et al.  UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE , 2011, 1110.3789.

[33]  J. Wheeler,et al.  Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.

[34]  Rollin C. Thomas,et al.  PTF10ops – a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere , 2011, 1108.0416.

[35]  P. Nugent,et al.  Metallicity Effects in NLTE Model Atmospheres of Type IA Supernovae , 1999 .

[36]  C. Tao,et al.  CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE , 2012, 1203.4839.

[37]  S. E. Persson,et al.  The underluminous Type Ia supernova 2005bl and the class of objects similar to SN 1991bg , 2007, 0711.4548.

[38]  S. Fabbro,et al.  Diversity of supernovae Ia determined using equivalent widths of Si II 4000 , 2008, 0809.3133.

[39]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[40]  P. Nugent,et al.  Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.

[41]  R. Itoh,et al.  EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc , 2009, 0908.2059.

[42]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[43]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[44]  R. Kirshner,et al.  Properties of the ultraviolet flux of Type Ia supernovae : an analysis with synthetic spectra of SN 2001ep and SN 2001eh , 2008, 0803.0871.

[45]  P. Astier,et al.  PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae , 2008, 0809.4407.

[46]  R. Beaton,et al.  VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig , 2011, 1109.0987.

[47]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[48]  Peter E. Nugent,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[49]  D. Berk,et al.  THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET , 2010, 1007.4842.

[50]  Robert A. Fesen,et al.  A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA , 2011, 1103.1671.

[51]  B. Draine,et al.  Hα AND FREE–FREE EMISSION FROM THE WARM IONIZED MEDIUM , 2011 .

[52]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[53]  M. Stritzinger,et al.  THE FAST DECLINING TYPE Ia SUPERNOVA 2003gs, AND EVIDENCE FOR A SIGNIFICANT DISPERSION IN NEAR-INFRARED ABSOLUTE MAGNITUDES OF FAST DECLINERS AT MAXIMUM LIGHT , 2009, 0908.1918.

[54]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[55]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[56]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[57]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[58]  R. Kirshner,et al.  METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA , 2013, 1302.4479.

[59]  N. B. Suntzeff,et al.  Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.

[60]  J. Truran,et al.  EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 2011, 1110.5809.

[61]  C. Tao,et al.  TYPE Ia SUPERNOVA CARBON FOOTPRINTS , 2011, 1109.1312.

[62]  R. Kirshner,et al.  THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA, , 2012, 1202.5301.

[63]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[64]  Mohan Ganeshalingam,et al.  High-velocity features in Type Ia supernova spectra , 2013, 1307.0563.

[65]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[66]  Claudia Winge,et al.  SN 1992A : ultraviolet and optical studies based on HST, IUE and CTIO observations , 1993 .

[67]  M. Sullivan,et al.  THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav , 2011, 1103.1797.

[68]  Robert P. Kirshner,et al.  VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE , 2011, 1107.3555.

[69]  M. Sullivan,et al.  Studying the diversity of Type Ia supernovae in the ultraviolet: comparing models with observations , 2012, 1208.4130.

[70]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[71]  R. Ellis,et al.  Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.

[72]  J. Frieman,et al.  A MISMATCH IN THE ULTRAVIOLET SPECTRA BETWEEN LOW-REDSHIFT AND INTERMEDIATE-REDSHIFT TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY , 2010, 1010.2749.

[73]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[74]  L. Zampieri,et al.  ULTRAVIOLET SPECTROSCOPY OF SUPERNOVAE: THE FIRST TWO YEARS OF SWIFT OBSERVATIONS , 2009, 0906.0367.

[75]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.